文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

「Flink」使用Managed Keyed State实现计数窗口功能

2016-03-16 12:05

关注

「Flink」使用Managed Keyed State实现计数窗口功能

先上代码:

public class WordCountKeyedState {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 初始化测试单词数据流
        DataStreamSource lineDS = env.addSource(new RichSourceFunction() {
            private boolean isCanaled = false;

            @Override
            public void run(SourceContext ctx) throws Exception {
                while(!isCanaled) {
                    ctx.collect("hadoop flink spark");
                    Thread.sleep(1000);
                }
            }

            @Override
            public void cancel() {
                isCanaled = true;
            }
        });

        // 切割单词,并转换为元组
        SingleOutputStreamOperator> wordTupleDS = lineDS.flatMap((String line, Collector> ctx) -> {
            Arrays.stream(line.split(" ")).forEach(word -> ctx.collect(Tuple2.of(word, 1)));
        }).returns(Types.TUPLE(Types.STRING, Types.INT));

        // 按照单词进行分组
        KeyedStream, Integer> keyedWordTupleDS = wordTupleDS.keyBy(t -> t.f1);

        // 对单词进行计数
        keyedWordTupleDS.flatMap(new RichFlatMapFunction, Tuple2>() {

            private transient ValueState> countSumValueState;

            @Override
            public void open(Configuration parameters) throws Exception {
                // 初始化ValueState
                ValueStateDescriptor> countSumValueStateDesc = new ValueStateDescriptor("countSumValueState",
                        TypeInformation.of(new TypeHint>() {})
                );
                countSumValueState = getRuntimeContext().getState(countSumValueStateDesc);
            }

            @Override
            public void flatMap(Tuple2 value, Collector> out) throws Exception {
                if(countSumValueState.value() == null) {
                    countSumValueState.update(Tuple2.of(0, 0));
                }

                Integer count = countSumValueState.value().f0;
                count++;
                Integer valueSum = countSumValueState.value().f1;
                valueSum += value.f1;

                countSumValueState.update(Tuple2.of(count, valueSum));

                // 每当达到3次,发送到下游
                if(count > 3) {
                    out.collect(Tuple2.of(value.f0, valueSum));
                    // 清除计数
                    countSumValueState.update(Tuple2.of(0, valueSum));
                }
            }
        }).print();

        env.execute("KeyedState State");
    }
}

代码说明:

构建测试数据源,每秒钟发送一次文本,为了测试方便,这里就发一个包含三个单词的文本行

image

对句子按照空格切分,并将单词转换为元组,每个单词初始出现的次数为1

image

按照单词进行分组

image

自定义FlatMap

初始化ValueState,注意:ValueState只能在KeyedStream中使用,而且每一个ValueState都对一个一个key。每当一个并发处理ValueState,都会从上下文获取到Key的取值,所以每个处理逻辑拿到的ValueStated都是对应指定key的ValueState,这个部分是由Flink自动完成的。

image

注意:

带默认初始值的ValueStateDescriptor已经过期了,官方推荐让我们手动在处理时检查是否为空

instead and manually manage the default value by checking whether the contents of the state is null.


@Deprecated
public ValueStateDescriptor(String name, TypeSerializer typeSerializer, T defaultValue) {
super(name, typeSerializer, defaultValue);
}

逻辑实现

在flatMap逻辑中判断ValueState是否已经初始化,如果没有手动给一个初始值。并进行累加后更新。每当count > 3发送计算结果到下游,并清空计数。

image

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯