文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Golang怎么实现快速求幂

2023-07-02 14:28

关注

这篇文章主要介绍了Golang怎么实现快速求幂的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Golang怎么实现快速求幂文章都会有所收获,下面我们一起来看看吧。

为方便起见,此处假设m>=0,对于m< 0的情况,求出n|m|后再取倒数即可。

另外此处暂不考虑结果越界的情况(超过 int64 范围)。

当然不能用编程语言的内置函数,我们只能用加减乘除来实现。

n的m次方的数学含义是:m个n相乘:n*n*n...*n,也就是说最简单的方式是执行 m 次乘法。

直接用乘法实现的问题是性能不高,其时间复杂度是 O(m),比如 329要执行29次乘法,而乘法运算是相对比较重的,我们看看能否采用什么方法将时间复杂度降低。

设m = x + y + z(x、y、z 都是整数),我们知道有如下数学等式: nm= nx+y+z = nx&lowast;ny&lowast;nz

也就是说,如果我们已经知道 nx、ny、nz的值,是不是就可以直接用他们相乘得出 nm的结果?这样的话乘的次数就大大降低了。

于是问题就变成应该将 m 拆成怎样的几个数的和。

因为计算机是玩二进制的,我们尝试着将这些数跟 2 扯上联系(以 2 为底),看看会不会有奇迹发生。

我们看看具体的例子:329

我们将29做这样的拆分:29 = 16 + 8 + 4 + 1。

这个拆分有什么特点呢?右边的数都是 2 的 X 次方(24+23+22+20)。

我们把上面的拆分带进公式:329=316&lowast;38&lowast;34&lowast;31

那我们能不能知道 316、38、34、31是什么呢?

我们不用计算就知道31是什么&mdash;&mdash;但仅此而已。

不过我们可以用 31自乘 4 次的到34;然后再用 34自乘得到38;再通过38自乘得到316

好像有点感觉了&mdash;&mdash;我们每做一次乘法,就能将结果翻倍(如 34自乘就变成 34&lowast;34=38)。

如此,虽然也要多次乘法,但乘的次数从29次降到9次!

然后我们再回头看看上面的拆分:

29 =16+8+4+1=24+23+22+20= 1&lowast;24+1&lowast;23+1&lowast;22+0&lowast;21+1&lowast;20

这不就是学校学的二进制转十进制吗(29 的二进制是 11101)?

329=316&lowast;38&lowast;34&lowast;31是说:取 29 的二进制表示中所有值是 1 的位,算出它们的指数值并相乘就得到最终的值。

我们用 go 语言实现一下:

// 求 a 的 n 次方// a、n 是非负整数func Pow(a,n int64) int64 {// 0 的任何次方都是 0if a == 0 {return 0}// 任何数的 0 次方都是 1if n == 0 {return 1}// 1 次方是它自身if n == 1 {return a}// 用滚雪球的方式计算幂// 雪球初始值是 1var result int64 = 1// 滚动因子初始化为 a 的 1 次方(a 自身)factor := a// 循环处理直到 n 变成 0(所有的二进制位都处理完了)for n != 0 {// 跟 1 做与运算,判断当前要处理的位是不是 1// 之所以是直接跟 1 做与运算,因为后面每处理一轮都将 n 右移了一位,保证每次要处理的位都在最低位if n & 1 != 0 {// 当前位是 1,需要乘进去result *= factor}// 每轮结束时将滚动因子自乘// 因为每行进一轮,指数都翻倍,整体结果就是自乘// 比如本轮因子是 2**4,下一轮就是 2**8// 2**8 = 2**(4+4) = 2**4 * 2**4// (** 表示指数)factor *= factor// n 右移一位,将下一轮要处理的位放在最低位n = n >> 1}return result}

有什么用呢

很多语言内置的 pow 函数都只接受浮点数,浮点数的运算是非常重的,如果我们的程序需要频繁计算整数的幂,就可以采用 quick pow 算法代替语言内置的幂函数以提升性能。

我们对 go 语言内置的 math.Pow 和 quick pow 算法做个性能测试对比一下。

// 测试 3 的 29 次方的性能测试var benchPowB int64 = 3var benchPowP int64 = 29// 上面的 quick pow 算法func BenchmarkQuickPow(b *testing.B)  {for i := 0; i < b.N; i++ {algo.Pow(benchPowB, benchPowP)}}// go 语言 math 包的 Pow 方法,只接受 float64 类型func BenchmarkInnerPow(b *testing.B)  {x := float64(benchPowB)y := float64(benchPowP)for i := 0; i < b.N; i++ {math.Pow(x, y)}}// 用简单乘法实现(3 自乘 29 次)func BenchmarkSimpleMulti(b *testing.B) {for i := 0; i < b.N; i++ {var r int64 = 1var j int64 = 0for ; j < benchPowP; j++ {r *= benchPowB}}}

测试结果:

goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
BenchmarkQuickPow-8           357897716                3.373 ns/op
BenchmarkInnerPow-8           39162492                29.30 ns/op
BenchmarkSimpleMulti-8          121066731                9.549 ns/op
PASS
ok      command-line-arguments  4.894s

从性能测试结果看,quick pow 算法比简单乘法快了好几倍,比 math.pow 快了近 10 倍。

所以,如果程序只需要求整数幂,而且能确保计算结果不会越界时,可以考虑使用 quick pow 算法代替语言内置的浮点函数。

关于“Golang怎么实现快速求幂”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Golang怎么实现快速求幂”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯