文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorch中dataloader的sampler参数详解

2024-04-02 19:55

关注

1. dataloader() 初始化函数

 def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
 batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
                 worker_init_fn=None, multiprocessing_context=None):

其中几个常用的参数:

下面看两段取自DataLoader中的__init__代码, 帮助我们理解几个常用参数之间的关系

2. shuffle 与sample 之间的关系

当我们sampler有输入时,shuffle的值就没有意义,

	if sampler is None:  # give default samplers
	    if self._dataset_kind == _DatasetKind.Iterable:
	        # See NOTE [ Custom Samplers and IterableDataset ]
	        sampler = _InfiniteConstantSampler()
	    else:  # map-style
	        if shuffle:
	            sampler = RandomSampler(dataset)
	        else:
	            sampler = SequentialSampler(dataset)

当dataset类型是map style时, shuffle其实就是改变sampler的取值

3. sample 的定义方法

3.1 sampler 参数的使用

sampler 是用来定义取batch方法的一个函数或者类,返回的是一个迭代器。

我们可以看下自带的RandomSampler类中最重要的iter函数

    def __iter__(self):
        n = len(self.data_source)
        # dataset的长度, 按顺序索引
        if self.replacement:# 对应的replace参数
            return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64).tolist())
        return iter(torch.randperm(n).tolist())        

可以看出,其实就是生成索引,然后随机的取值, 然后再迭代。

其实还有一些细节需要注意理解:

比如__len__函数,包括DataLoader的len和sample的len, 两者区别, 这部分代码比较简单,可以自行阅读,其实参考着RandomSampler写也不会出现问题。
比如,迭代器和生成器的使用, 以及区别

    if batch_size is not None and batch_sampler is None:
        # auto_collation without custom batch_sampler
        batch_sampler = BatchSampler(sampler, batch_size, drop_last)
        
    self.sampler = sampler
    self.batch_sampler = batch_sampler

BatchSampler的生成过程:

# 略去类的初始化
    def __iter__(self):
        batch = []
        for idx in self.sampler:
            batch.append(idx)
            if len(batch) == self.batch_size:
                yield batch
                batch = []
        if len(batch) > 0 and not self.drop_last:
            yield batch

就是按batch_size从sampler中读取索引, 并形成生成器返回。

以上可以看出, batch_sampler和sampler, batch_size, drop_last之间的关系

4. batch 生成过程

每个batch都是由迭代器产生的:

# DataLoader中iter的部分
    def __iter__(self):
        if self.num_workers == 0:
            return _SingleProcessDataLoaderIter(self)
        else:
            return _MultiProcessingDataLoaderIter(self)

# 再看调用的另一个类
class _SingleProcessDataLoaderIter(_BaseDataLoaderIter):
    def __init__(self, loader):
        super(_SingleProcessDataLoaderIter, self).__init__(loader)
        assert self._timeout == 0
        assert self._num_workers == 0

        self._dataset_fetcher = _DatasetKind.create_fetcher(
            self._dataset_kind, self._dataset, self._auto_collation, self._collate_fn, self._drop_last)

    def __next__(self):
        index = self._next_index()  
        data = self._dataset_fetcher.fetch(index)  
        if self._pin_memory:
            data = _utils.pin_memory.pin_memory(data)
        return data

到此这篇关于pytorch中dataloader 的sampler 参数详解的文章就介绍到这了,更多相关pytorch sampler 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯