文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python因子分析的实例

2024-04-02 19:55

关注

一、起源

        因子分析的起源是这样的:1904年英国的一个心理学家发现学生的英语、法语和古典语成绩非常有相关性,他认为这三门课程背后有一个共同的因素驱动,最后将这个因素定义为“语言能力”。

        基于这个想法,发现很多相关性很高的因素背后有共同的因子驱动,从而定义了因子分析,这便是因子分析的由来。

二、基本思想

        我们再通过一个更加实际的例子来理解因子分析的基本思想:

        现在假设一个同学的数学、物理、化学、生物都考了满分,那么我们可以认为这个学生的理性思维比较强,在这里理性思维就是我们所说的一个因子。在这个因子的作用下,偏理科的成绩才会那么高。

        到底什么是因子分析?就是假设现有全部自变量x的出现是因为某个潜在变量的作用,这个潜在的变量就是我们说的因子。在这个因子的作用下,x能够被观察到。

        因子分析就是将存在某些相关性的变量提炼为较少的几个因子,用这几个因子去表示原本的变量,也可以根据因子对变量进行分类

        因子分子本质上也是降维的过程,和主成分分析(PCA)算法比较类似。

三、算法用途

        因子分析法和主成分分析法有很多类似之处。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。因子分析法也可以用来综合评价。

        其主要思路是利用研究指标的之间存在一定的相关性,从而推想是否存在某些潜在的共性因子,而这些不同的潜在的共性因子不同程度地共同影响着研究指标。因子分析可以在许多变量中找出隐藏的具有代表性的因子,将共同本质的变量归入一个因子,可以减少变量的数目。

四、因子分析步骤

应用因子分析法的主要步骤如下:

五、factor_analyzer库

利用Python进行因子分析的核心库是:factor_analyzer

pip install factor_analyzer

这个库主要有两个主要的模块需要学习:

官网学习地址:factor_analyzer package — factor_analyzer 0.3.1 documentation

六、实例详解

 数据来源于中国统计年鉴。

1.导入库

# 数据处理
import pandas as pd
import numpy as np
 
# 绘图
import seaborn as sns
import matplotlib.pyplot as plt
# 因子分析
from factor_analyzer import FactorAnalyzer

2.读取数据

df = pd.read_csv("D:\桌面\demo.csv",encoding='gbk')
df

输出:

 如果不想要城市那一列的话,可以在读取的时候就删除,也可以后面再删

比如,读取时删除

df = pd.read_csv("D:\桌面\demo.csv", index_col=0,encoding='gbk').reset_index(drop=True)
df

返回:

 然后我们查询一下,数据的缺失值情况:

df.isnull().sum()

返回:

 然后,我们可以针对的,对数据进行一次处理:

比如删除无效字段的那一列

#  去掉无效字段
df.drop(["变量名1","变量名2","变量名3"],axis=1,inplace=True)

或者,删除空值

# 去掉空值
df.dropna(inplace=True)

3.充分性检测

        在进行因子分析之前,需要先进行充分性检测,主要是检验相关特征阵中各个变量间的相关性,是否为单位矩阵,也就是检验各个变量是否各自独立。

3.1 Bartlett's球状检验

        检验总体变量的相关矩阵是否是单位阵(相关系数矩阵对角线的所有元素均为1,所有非对角线上的元素均为零);即检验各个变量是否各自独立。

        如果不是单位矩阵,说明原变量之间存在相关性,可以进行因子分子;反之,原变量之间不存在相关性,数据不适合进行主成分分析

from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
 
chi_square_value, p_value = calculate_bartlett_sphericity(df)
chi_square_value, p_value

返回:

 3.2 KMO检验

        检查变量间的相关性和偏相关性,取值在0-1之间;KOM统计量越接近1,变量间的相关性越强,偏相关性越弱,因子分析的效果越好。

通常取值从0.6开始进行因子分析

#KMO检验
from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all,kmo_model=calculate_kmo(df)
kmo_model

返回:

 通过结果可以看到KMO大于0.6,也说明变量之间存在相关性,可以进行分析。

4.选择因子个数

方法:计算相关矩阵的特征值,进行降序排列

4.1 特征值和特征向量

faa = FactorAnalyzer(25,rotation=None)
faa.fit(df)
 
# 得到特征值ev、特征向量v
ev,v=faa.get_eigenvalues()
print(ev,v)

返回:

4.2 可视化展示

将特征值和因子个数的变化绘制成图形:

 # 同样的数据绘制散点图和折线图
plt.scatter(range(1, df.shape[1] + 1), ev)
plt.plot(range(1, df.shape[1] + 1), ev)
 
# 显示图的标题和xy轴的名字
# 最好使用英文,中文可能乱码
plt.title("Scree Plot")  
plt.xlabel("Factors")
plt.ylabel("Eigenvalue")
 
plt.grid()  # 显示网格
plt.show()  # 显示图形

返回:

 从上面的图形中,我们明确地看到:选择2或3个因子就可以了

4.3 可视化中显示中文不报错

只需要在画图前,再导入一个库即可,见代码

import matplotlib as mpl
 
mpl.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

5.因子旋转

5.1 建立因子分析模型

在这里选择,最大方差化因子旋转

# 选择方式: varimax 方差最大化
# 选择固定因子为 2 个
faa_two = FactorAnalyzer(2,rotation='varimax')
faa_two.fit(df)

返回:

ratation参数的其他取值情况:

  • varimax (orthogonal rotation)
  • promax (oblique rotation)
  • oblimin (oblique rotation)
  • oblimax (orthogonal rotation)
  • quartimin (oblique rotation)
  • quartimax (orthogonal rotation)
  • equamax (orthogonal rotation)

5.2 查看因子方差-get_communalities()

查看公因子方差

# 公因子方差
faa_two.get_communalities()

返回:

 查看每个变量的公因子方差数据

pd.DataFrame(faa_two.get_communalities(),index=df.columns)

返回:

5.3 查看旋转后的特征值

faa_two.get_eigenvalues()

返回:

pd.DataFrame(faa_two.get_eigenvalues())

返回:

 5.4 查看成分矩阵

查看它们构成的成分矩阵:

# 变量个数*因子个数
faa_two.loadings_

返回:

 

如果转成DataFrame格式,index就是我们的变量,columns就是指定的因子factor。转DataFrame格式后的数据:

pd.DataFrame(faa_two.loadings_,index=df.columns)

返回:

 5.5 查看因子贡献率

通过理论部分的解释,我们发现每个因子都对变量有一定的贡献,存在某个贡献度的值,在这里查看3个和贡献度相关的指标:

 我们来看一下总方差贡献吧

faa_two.get_factor_variance()

返回:

 

 6.隐藏变量可视化

为了更直观地观察每个隐藏变量和哪些特征的关系比较大,进行可视化展示,为了方便取上面相关系数的绝对值:

df1 = pd.DataFrame(np.abs(faa_two.loadings_),index=df.columns)
print(df1)

返回:

然后我们通过热力图将系数矩阵绘制出来:

# 绘图
 
plt.figure(figsize = (14,14))
ax = sns.heatmap(df1, annot=True, cmap="BuPu")
 
# 设置y轴字体大小
ax.yaxis.set_tick_params(labelsize=15)
plt.title("Factor Analysis", fontsize="xx-large")
 
# 设置y轴标签
plt.ylabel("Sepal Width", fontsize="xx-large")
# 显示图片
plt.show()
 
# 保存图片
# plt.savefig("factorAnalysis", dpi=500)

返回:

7.转成新变量

上面我们已经知道了2个因子比较合适,可以将原始数据转成2个新的特征,具体转换方式为:

faa_two.transform(df)

返回:

 转成DataFrame格式后数据展示效果更好:

df2 = pd.DataFrame(faa_two.transform(df))
print(df2)

返回:

七、参考资料

1、Factor Analysis:Factor Analysis with Python — DataSklr

2、多因子分析:因子分析(factor analysis)例子–Python | 文艺数学君

3、factor_analyzer package的官网使用手册:factor_analyzer package — factor_analyzer 0.3.1 documentation

4、浅谈主成分分析和因子分析:浅谈主成分分析与因子分析 - 知乎

到此这篇关于python因子分析的实例的文章就介绍到这了,更多相关python 因子分析内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯