这篇文章将为大家详细讲解有关TF-IDF理解及其Java实现的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
TF-IDF
前言
前段时间,又具体看了自己以前整理的TF-IDF,这里把它发布在博客上,知识就是需要不断的重复的,否则就感觉生疏了。
TF-IDF理解
TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术, TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m + k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。这就是IDF的不足之处.
TF公式:
以上式子中是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和。
IDF公式:
|D|:语料库中的文件总数
:包含词语 ti 的文件数目(即 ni,j不等于0的文件数目)如果该词语不在语料库中,就会导致被除数为零,因此一般情况下使用
然后
TF-IDF实现(Java)
这里采用了外部插件IKAnalyzer-2012.jar,用其进行分词
具体代码如下:
package tfidf;import java.io.*;import java.util.*;import org.wltea.analyzer.lucene.IKAnalyzer;public class ReadFiles {private static ArrayList<String> FileList = new ArrayList<String>();// the list of file//get list of file for the directory, including sub-directory of itpublic static List<String> readDirs(String filepath) throws FileNotFoundException, IOException {try {File file = new File(filepath);if(!file.isDirectory()) {System.out.println("输入的[]");System.out.println("filepath:" + file.getAbsolutePath());} else {String[] flist = file.list();for (int i = 0; i < flist.length; i++) {File newfile = new File(filepath + "\\" + flist[i]);if(!newfile.isDirectory()) {FileList.add(newfile.getAbsolutePath());} else if(newfile.isDirectory()) //if file is a directory, call ReadDirs{readDirs(filepath + "\\" + flist[i]);}}}}catch(FileNotFoundException e) {System.out.println(e.getMessage());}return FileList;}//read filepublic static String readFile(String file) throws FileNotFoundException, IOException {StringBuffer strSb = new StringBuffer();//String is constant, StringBuffer can be changed.InputStreamReader inStrR = new InputStreamReader(new FileInputStream(file), "gbk");//byte streams to character streamsBufferedReader br = new BufferedReader(inStrR);String line = br.readLine();while(line != null){strSb.append(line).append("\r\n");line = br.readLine();}return strSb.toString();}//word segmentationpublic static ArrayList<String> cutWords(String file) throws IOException{ArrayList<String> words = new ArrayList<String>();String text = ReadFiles.readFile(file);IKAnalyzer analyzer = new IKAnalyzer();words = analyzer.split(text);return words;}//term frequency in a file, times for each wordpublic static HashMap<String, Integer> normalTF(ArrayList<String> cutwords){HashMap<String, Integer> resTF = new HashMap<String, Integer>();for (String word : cutwords){if(resTF.get(word) == null){resTF.put(word, 1);System.out.println(word);} else{resTF.put(word, resTF.get(word) + 1);System.out.println(word.toString());}}return resTF;}//term frequency in a file, frequency of each wordpublic static HashMap<String, float> tf(ArrayList<String> cutwords){HashMap<String, float> resTF = new HashMap<String, float>();int wordLen = cutwords.size();HashMap<String, Integer> intTF = ReadFiles.normalTF(cutwords);Iterator iter = intTF.entrySet().iterator();//iterator for that get from TFwhile(iter.hasNext()){Map.Entry entry = (Map.Entry)iter.next();resTF.put(entry.getKey().toString(), float.parsefloat(entry.getValue().toString()) / wordLen);System.out.println(entry.getKey().toString() + " = "+ float.parsefloat(entry.getValue().toString()) / wordLen);}return resTF;}//tf times for filepublic static HashMap<String, HashMap<String, Integer>> normalTFAllFiles(String dirc) throws IOException{HashMap<String, HashMap<String, Integer>> allNormalTF = new HashMap<String, HashMap<String,Integer>>();List<String> filelist = ReadFiles.readDirs(dirc);for (String file : filelist){HashMap<String, Integer> dict = new HashMap<String, Integer>();ArrayList<String> cutwords = ReadFiles.cutWords(file);//get cut word for one filedict = ReadFiles.normalTF(cutwords);allNormalTF.put(file, dict);}return allNormalTF;}//tf for all filepublic static HashMap<String,HashMap<String, float>> tfAllFiles(String dirc) throws IOException{HashMap<String, HashMap<String, float>> allTF = new HashMap<String, HashMap<String, float>>();List<String> filelist = ReadFiles.readDirs(dirc);for (String file : filelist){HashMap<String, float> dict = new HashMap<String, float>();ArrayList<String> cutwords = ReadFiles.cutWords(file);//get cut words for one filedict = ReadFiles.tf(cutwords);allTF.put(file, dict);}return allTF;}public static HashMap<String, float> idf(HashMap<String,HashMap<String, float>> all_tf){HashMap<String, float> resIdf = new HashMap<String, float>();HashMap<String, Integer> dict = new HashMap<String, Integer>();int docNum = FileList.size();for (int i = 0; i < docNum; i++){HashMap<String, float> temp = all_tf.get(FileList.get(i));Iterator iter = temp.entrySet().iterator();while(iter.hasNext()){Map.Entry entry = (Map.Entry)iter.next();String word = entry.getKey().toString();if(dict.get(word) == null){dict.put(word, 1);} else {dict.put(word, dict.get(word) + 1);}}}System.out.println("IDF for every word is:");Iterator iter_dict = dict.entrySet().iterator();while(iter_dict.hasNext()){Map.Entry entry = (Map.Entry)iter_dict.next();float value = (float)Math.log(docNum / float.parsefloat(entry.getValue().toString()));resIdf.put(entry.getKey().toString(), value);System.out.println(entry.getKey().toString() + " = " + value);}return resIdf;}public static void tf_idf(HashMap<String,HashMap<String, float>> all_tf,HashMap<String, float> idfs){HashMap<String, HashMap<String, float>> resTfIdf = new HashMap<String, HashMap<String, float>>();int docNum = FileList.size();for (int i = 0; i < docNum; i++){String filepath = FileList.get(i);HashMap<String, float> tfidf = new HashMap<String, float>();HashMap<String, float> temp = all_tf.get(filepath);Iterator iter = temp.entrySet().iterator();while(iter.hasNext()){Map.Entry entry = (Map.Entry)iter.next();String word = entry.getKey().toString();float value = (float)float.parsefloat(entry.getValue().toString()) * idfs.get(word);tfidf.put(word, value);}resTfIdf.put(filepath, tfidf);}System.out.println("TF-IDF for Every file is :");DisTfIdf(resTfIdf);}public static void DisTfIdf(HashMap<String, HashMap<String, float>> tfidf){Iterator iter1 = tfidf.entrySet().iterator();while(iter1.hasNext()){Map.Entry entrys = (Map.Entry)iter1.next();System.out.println("FileName: " + entrys.getKey().toString());System.out.print("{");HashMap<String, float> temp = (HashMap<String, float>) entrys.getValue();Iterator iter2 = temp.entrySet().iterator();while(iter2.hasNext()){Map.Entry entry = (Map.Entry)iter2.next();System.out.print(entry.getKey().toString() + " = " + entry.getValue().toString() + ", ");}System.out.println("}");}}public static void main(String[] args) throws IOException {// TODO Auto-generated method stubString file = "D:/testfiles";HashMap<String,HashMap<String, float>> all_tf = tfAllFiles(file);System.out.println();HashMap<String, float> idfs = idf(all_tf);System.out.println();tf_idf(all_tf, idfs);}}
结果如下图:
常见问题
没有加入lucene jar包
lucene包和je包版本不适合
关于“TF-IDF理解及其Java实现的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。