文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

tf.nn.conv2d与tf.layers.conv2d的区别是什么

2023-07-05 05:14

关注

这篇文章主要讲解了“tf.nn.conv2d与tf.layers.conv2d的区别是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“tf.nn.conv2d与tf.layers.conv2d的区别是什么”吧!

tf.nn.conv2d与tf.layers.conv2d的区别

在写CNN中注意到tensorflow目前有tf.nn.conv2d和tf.layers.conv2d这两个很相似的API.

tf.nn.conv2d, 需要自行传入初始化好的filter(四个维度),在初始化filter或者说Weights中,已经手动选择了初始化方案,一般用的是tf.truncated_normal。另外tf.nn.conv2d中激活函数需要另外写。

而在tf.layers.conv2d中,只要写入n和size,参数列表中kernel_initializer默认是None, 不清楚这里的参数是如何初始化的? tf.layers.conv2d中,激活函数是一个参数,不需要另外调用。

一般推荐使用tf.layers.下面的函数,用起来方便。但是在tf2.0里,tf.layers.下面的API也都被遗弃了,tf2.0推荐使用keras.layers下面的API。

tf.nn.conv2d

tf.nn.conv2d与tf.layers.conv2d的区别是什么

tf.layers.conv2d

tf.nn.conv2d与tf.layers.conv2d的区别是什么

tf.nn.conv2d和tf.layers.conv2d的学习

看了很多tensorflow卷积的例子,有的用了tf.nn.conv2d,有的用了tf.layers.conv2d,那么这两个究竟有啥不同呢?

tf.layers.conv2d(inputs, filters, kernel_size, strides=(1,1),                       padding='valid', data_format='channels_last',                    dilation_rate=(1,1), activation=None,                    use_bias=True, kernel_initializer=None,                    bias_initializer=init_ops.zeros_initializer(),                    kernel_regularizer=None,                    bias_regularizer=None,                    activity_regularizer=None, trainable=True,                    name=None, reuse=None)tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

对于卷积来说,作用是一样的。tf.layers.conv2d 使用tf.nn.convolution作为后端。

一个参数要注意一下:

[filter_height, filter_width, in_channels, out_channels]

tf.layers.conv2d参数丰富,一般用于从头训练一个模型。

tf.nn.conv2d,一般在下载预训练好的模型时使用。

感谢各位的阅读,以上就是“tf.nn.conv2d与tf.layers.conv2d的区别是什么”的内容了,经过本文的学习后,相信大家对tf.nn.conv2d与tf.layers.conv2d的区别是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯