文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python数据分析之DataFrame内存优化

2022-06-02 22:50

关注
目录

💃今天看案例的时候看见了一个关于pandas数据的内存压缩功能,特地来记录一下。

🎒先说明一下情况,pandas处理几百兆的dataframe是没有问题的,但是我们在处理几个G甚至更大的数据时,就会特别占用内存,对内存小的用户特别不好,所以对数据进行压缩是很有必要的。

1. pandas查看数据占用大小

给大家看一下这么查看自己的内存大小(user_log是dataframe的名字)


#方法1 就是使用查看dataframe信息的命令
user_log.info()
#方法2 使用memory_usage()或者getsizeof(user_log)
import time
import sys
print('all_data占据内存约: {:.2f} GB'.format(user_log.memory_usage().sum()/ (1024**3)))
print('all_data占据内存约: {:.2f} GB'.format(sys.getsizeof(user_log)/(1024**3)))

我这里有个dataframe文件叫做user_log,原始大小为1.91G,然后pandas读取出来,内存使用了2.9G。

看一下原始数据大小:1.91G

在这里插入图片描述

pandas读取后的内存消耗:2.9G

在这里插入图片描述

2. 对数据进行压缩

我们这里主要采用对数值型类型的数据进行降级,说一下降级是什么意思意思呢,可以比喻为一个一个抽屉,你有一个大抽屉,但是你只装了钥匙,这就会有很多空间浪费掉,如果我们将钥匙放到一个小抽屉里,就可以节省很多空间,就像字符的类型int32 比int8占用空间大很多,但是我们的数据使用int8类型就够了,这就导致数据占用了很多空间,我们要做的就是进行数据类型转换,节省内存空间。

压缩数值的这段代码是从天池大赛的某个项目中看见的,查阅资料后发现,大家压缩内存都是基本固定的函数形式


def reduce_mem_usage(df):
    starttime = time.time()
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    start_mem = df.memory_usage().sum() / 1024**2
    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics:
            c_min = df[col].min()
            c_max = df[col].max()
            if pd.isnull(c_min) or pd.isnull(c_max):
                continue
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
    end_mem = df.memory_usage().sum() / 1024**2
    print('-- Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction),time spend:{:2.2f} min'.format(end_mem,
                                                                                                           100*(start_mem-end_mem)/start_mem,
                                                                                                           (time.time()-starttime)/60))
    return df

用压缩的方式将数据导入user_log2中


#首先读取到csv中如何传入函数生称新的csv
user_log2=reduce_mem_usage(pd.read_csv(r'/Users/liucong/MainFiles/ML/tianchi/tianmiao/user_log_format1.csv'))

读取成功:内训大小为890.48m 减少了69.6%,效果显著

在这里插入图片描述

查看压缩后的数据集信息:类型发生了变化,数量变小了

在这里插入图片描述

3. 参考资料

《天池大赛》
《kaggle大赛》
链接: pandas处理datafarme节约内存.

到此这篇关于python数据分析之DataFrame内存优化的文章就介绍到这了,更多相关python DataFrame内存优化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯