场景
工作中有一场景,后台部署2个节点,同时注册到执行器内,如何避免任务重复执行呢?
其实xxl-job本身已经考虑到这一点,我们只需要在创建任务的时候这样做就可以了:
路由策略:选择 一致性HASH
阻塞处理策略:选择 丢弃后续调度
配置详解:
基础配置: - 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能; 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器, 可在 "执行器管理" 进行设置; - 任务描述:任务的描述信息,便于任务管理; - 负责人:任务的负责人; - 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔;触发配置: - 调度类型: 无:该类型不会主动触发调度; CRON:该类型将会通过CRON,触发任务调度; 固定速度:该类型将会以固定速度,触发任务调度;按照固定的间隔时间,周期性触发; 固定延迟:该类型将会以固定延迟,触发任务调度;按照固定的延迟时间,从上次调度结束后开始计算延迟时间,到达延迟时间后触发下次调度; - CRON:触发任务执行的Cron表达式; - 固定速度:固定速度的时间间隔,单位为秒; - 固定延迟:固定延迟的时间间隔,单位为秒;任务配置: - 运行模式: BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 "JobHandler" 属性匹配执行器中任务; GLUE模式(Java):任务以源码方式维护在调度中心;该模式的任务实际上是一段继承自IJobHandler的Java类代码并 "groovy" 源码方式维护,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务; GLUE模式(Shell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "shell" 脚本; GLUE模式(Python):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "python" 脚本; GLUE模式(PHP):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "php" 脚本; GLUE模式(NodeJS):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "nodejs" 脚本; GLUE模式(PowerShell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "PowerShell" 脚本; - JobHandler:运行模式为 "BEAN模式" 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值; - 执行参数:任务执行所需的参数; 高级配置: - 路由策略:当执行器集群部署时,提供丰富的路由策略,包括; FIRST(第一个):固定选择第一个机器; LAST(最后一个):固定选择最后一个机器; ROUND(轮询):; RANDOM(随机):随机选择在线的机器; CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。 LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举; LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举; FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度; BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度; SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务; - 子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。 - 调度过期策略: - 忽略:调度过期后,忽略过期的任务,从当前时间开始重新计算下次触发时间; - 立即执行一次:调度过期后,立即执行一次,并从当前时间开始重新计算下次触发时间; - 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略; 单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行; 丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败; 覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务; - 任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务; - 失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
引自:xxl-job官网
来源地址:https://blog.csdn.net/lifulian318/article/details/129448074