本篇内容介绍了“Java线程池是怎么工作的”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
线程池的工作原理
首先我们看下当一个新的任务提交到线程池之后,线程池是如何处理的
线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则执行第二步。
线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里进行等待。如果工作队列满了,则执行第三步
线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务
线程池饱和策略
这里提到了线程池的饱和策略,那我们就简单介绍下有哪些饱和策略:
AbortPolicy
为Java线程池默认的阻塞策略,不执行此任务,而且直接抛出一个运行时异常,切记ThreadPoolExecutor.execute需要try catch,否则程序会直接退出。
DiscardPolicy
直接抛弃,任务不执行,空方法
DiscardOldestPolicy
从队列里面抛弃head的一个任务,并再次execute 此task。
CallerRunsPolicy
在调用execute的线程里面执行此command,会阻塞入口
用户自定义拒绝策略(最常用)
实现RejectedExecutionHandler,并自己定义策略模式
下我们以ThreadPoolExecutor为例展示下线程池的工作流程图
如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
如果无法将任务加入BlockingQueue(队列已满),则在非corePool中创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法。
ThreadPoolExecutor采取上述步骤的总体设计思路,是为了在执行execute()方法时,尽可能地避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在ThreadPoolExecutor完成预热之后(当前运行的线程数大于等于corePoolSize),几乎所有的execute()方法调用都是执行步骤2,而步骤2不需要获取全局锁。
关键方法源码分析
我们看看核心方法添加到线程池方法execute的源码如下:
// //Executes the given task sometime in the future. The task //may execute in a new thread or in an existing pooled thread. // // If the task cannot be submitted for execution, either because this // executor has been shutdown or because its capacity has been reached, // the task is handled by the current {@code RejectedExecutionHandler}. // // @param command the task to execute // @throws RejectedExecutionException at discretion of // {@code RejectedExecutionHandler}, if the task // cannot be accepted for execution // @throws NullPointerException if {@code command} is null // public void execute(Runnable command) { if (command == null) throw new NullPointerException(); // // Proceed in 3 steps: // // 1. If fewer than corePoolSize threads are running, try to // start a new thread with the given command as its first // task. The call to addWorker atomically checks runState and // workerCount, and so prevents false alarms that would add // threads when it shouldn't, by returning false. // 翻译如下: // 判断当前的线程数是否小于corePoolSize如果是,使用入参任务通过addWord方法创建一个新的线程, // 如果能完成新线程创建exexute方法结束,成功提交任务 // 2. If a task can be successfully queued, then we still need // to double-check whether we should have added a thread // (because existing ones died since last checking) or that // the pool shut down since entry into this method. So we // recheck state and if necessary roll back the enqueuing if // stopped, or start a new thread if there are none. // 翻译如下: // 在第一步没有完成任务提交;状态为运行并且能否成功加入任务到工作队列后,再进行一次check,如果状态 // 在任务加入队列后变为了非运行(有可能是在执行到这里线程池shutdown了),非运行状态下当然是需要 // reject;然后再判断当前线程数是否为0(有可能这个时候线程数变为了0),如是,新增一个线程; // 3. If we cannot queue task, then we try to add a new // thread. If it fails, we know we are shut down or saturated // and so reject the task. // 翻译如下: // 如果不能加入任务到工作队列,将尝试使用任务新增一个线程,如果失败,则是线程池已经shutdown或者线程池 // 已经达到饱和状态,所以reject这个他任务 // int c = ctl.get(); // 工作线程数小于核心线程数 if (workerCountOf(c)
下面我们继续看看addWorker是如何实现的:
private boolean addWorker(Runnable firstTask, boolean core) { // java标签 retry: // 死循环 for (;;) { int c = ctl.get(); // 获取当前线程状态 int rs = runStateOf(c); // Check if queue empty only if necessary. // 这个逻辑判断有点绕可以改成 // rs >= shutdown && (rs != shutdown || firstTask != null || workQueue.isEmpty()) // 逻辑判断成立可以分为以下几种情况均不接受新任务 // 1、rs > shutdown:--不接受新任务 // 2、rs >= shutdown && firstTask != null:--不接受新任务 // 3、rs >= shutdown && workQueue.isEmppty:--不接受新任务 // 逻辑判断不成立 // 1、rs==shutdown&&firstTask != null:此时不接受新任务,但是仍会执行队列中的任务 // 2、rs==shotdown&&firstTask == null:会执行addWork(null,false) // 防止了SHUTDOWN状态下没有活动线程了,但是队列里还有任务没执行这种特殊情况。 // 添加一个null任务是因为SHUTDOWN状态下,线程池不再接受新任务 if (rs >= SHUTDOWN &&! (rs == SHUTDOWN && firstTask == null &&! workQueue.isEmpty())) return false; // 死循环 // 如果线程池状态为RUNNING并且队列中还有需要执行的任务 for (;;) { // 获取线程池中线程数量 int wc = workerCountOf(c); // 如果超出容量或者最大线程池容量不在接受新任务 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; // 线程安全增加工作线程数 if (compareAndIncrementWorkerCount(c)) // 跳出retry break retry; c = ctl.get(); // Re-read ctl // 如果线程池状态发生变化,重新循环 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } // 走到这里说明工作线程数增加成功 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { final ReentrantLock mainLock = this.mainLock; w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { // 加锁 mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int c = ctl.get(); int rs = runStateOf(c); // RUNNING状态 || SHUTDONW状态下清理队列中剩余的任务 if (rs if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); // 将新启动的线程添加到线程池中 workers.add(w); // 更新线程池线程数且不超过最大值 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } // 启动新添加的线程,这个线程首先执行firstTask,然后不停的从队列中取任务执行 if (workerAdded) { //执行ThreadPoolExecutor的runWoker方法 t.start(); workerStarted = true; } } } finally { // 线程启动失败,则从wokers中移除w并递减wokerCount if (! workerStarted) // 递减wokerCount会触发tryTerminate方法 addWorkerFailed(w); } return workerStarted; }
addWorker之后是runWorker,第一次启动会执行初始化传进来的任务firstTask;然后会从workQueue中取任务执行,如果队列为空则等待keepAliveTime这么长时间
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; // 允许中断 w.unlock(); // allow interrupts boolean completedAbruptly = true; try { // 如果getTask返回null那么getTask中会将workerCount递减,如果异常了这个递减操作会在processWorkerExit中处理 while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
我们看下getTask是如何执行的
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? // 死循环 retry: for (;;) { // 获取线程池状态 int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. // 1.rs > SHUTDOWN 所以rs至少等于STOP,这时不再处理队列中的任务 // 2.rs = SHUTDOWN 所以rs>=STOP肯定不成立,这时还需要处理队列中的任务除非队列为空 // 这两种情况都会返回null让runWoker退出while循环也就是当前线程结束了,所以必须要decrement if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { // 递减workerCount值 decrementWorkerCount(); return null; } // 标记从队列中取任务时是否设置超时时间 boolean timed; // Are workers subject to culling? // 1.RUNING状态 // 2.SHUTDOWN状态,但队列中还有任务需要执行 for (;;) { int wc = workerCountOf(c); // 1.core thread允许被超时,那么超过corePoolSize的的线程必定有超时 // 2.allowCoreThreadTimeOut == false && wc > // corePoolSize时,一般都是这种情况,core thread即使空闲也不会被回收,只要超过的线程才会 timed = allowCoreThreadTimeOut || wc > corePoolSize; // 从addWorker可以看到一般wc不会大于maximumPoolSize,所以更关心后面半句的情形: // 1. timedOut == false 第一次执行循环, 从队列中取出任务不为null方法返回 或者 // poll出异常了重试 // 2.timeOut == true && timed == // false:看后面的代码workerQueue.poll超时时timeOut才为true, // 并且timed要为false,这两个条件相悖不可能同时成立(既然有超时那么timed肯定为true) // 所以超时不会继续执行而是return null结束线程。 if (wc break; // workerCount递减,结束当前thread if (compareAndDecrementWorkerCount(c)) return null; c = ctl.get(); // Re-read ctl // 需要重新检查线程池状态,因为上述操作过程中线程池可能被SHUTDOWN if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } try { // 1.以指定的超时时间从队列中取任务 // 2.core thread没有超时 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true;// 超时 } catch (InterruptedException retry) { timedOut = false;// 线程被中断重试 } } }
下面我们看下processWorkerExit是如何工作的
private void processWorkerExit(Worker w, boolean completedAbruptly) { // 正常的话再runWorker的getTask方法workerCount已经被减一了 if (completedAbruptly) decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 累加线程的completedTasks completedTaskCount += w.completedTasks; // 从线程池中移除超时或者出现异常的线程 workers.remove(w); } finally { mainLock.unlock(); } // 尝试停止线程池 tryTerminate(); int c = ctl.get(); // runState为RUNNING或SHUTDOWN if (runStateLessThan(c, STOP)) { // 线程不是异常结束 if (!completedAbruptly) { // 线程池最小空闲数,允许core thread超时就是0,否则就是corePoolSize int min = allowCoreThreadTimeOut ? 0 : corePoolSize; // 如果min == 0但是队列不为空要保证有1个线程来执行队列中的任务 if (min == 0 && !workQueue.isEmpty()) min = 1; // 线程池还不为空那就不用担心了 if (workerCountOf(c) >= min) return; // replacement not needed } // 1.线程异常退出 // 2.线程池为空,但是队列中还有任务没执行,看addWoker方法对这种情况的处理 addWorker(null, false); } }
tryTerminate
processWorkerExit方法中会尝试调用tryTerminate来终止线程池。这个方法在任何可能导致线程池终止的动作后执行:比如减少wokerCount或SHUTDOWN状态下从队列中移除任务。
final void tryTerminate() { for (;;) { int c = ctl.get(); // 以下状态直接返回: // 1.线程池还处于RUNNING状态 // 2.SHUTDOWN状态但是任务队列非空 // 3.runState >= TIDYING 线程池已经停止了或在停止了 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && !workQueue.isEmpty())) return; // 只能是以下情形会继续下面的逻辑:结束线程池。 // 1.SHUTDOWN状态,这时不再接受新任务而且任务队列也空了 // 2.STOP状态,当调用了shutdownNow方法 // workerCount不为0则还不能停止线程池,而且这时线程都处于空闲等待的状态 // 需要中断让线程“醒”过来,醒过来的线程才能继续处理shutdown的信号。 if (workerCountOf(c) != 0) { // Eligible to terminate // runWoker方法中w.unlock就是为了可以被中断,getTask方法也处理了中断。 // ONLY_ONE:这里只需要中断1个线程去处理shutdown信号就可以了。 interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 进入TIDYING状态 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { // 子类重载:一些资源清理工作 terminated(); } finally { // TERMINATED状态 ctl.set(ctlOf(TERMINATED, 0)); // 继续awaitTermination termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS } }
shutdown这个方法会将runState置为SHUTDOWN,会终止所有空闲的线程。shutdownNow方法将runState置为STOP。和shutdown方法的区别,这个方法会终止所有的线程。主要区别在于shutdown调用的是interruptIdleWorkers这个方法,而shutdownNow实际调用的是Worker类的interruptIfStarted方法:
他们的实现如下:
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 线程池状态设为SHUTDOWN,如果已经至少是这个状态那么则直接返回 advanceRunState(SHUTDOWN); // 注意这里是中断所有空闲的线程:runWorker中等待的线程被中断 → 进入processWorkerExit → // tryTerminate方法中会保证队列中剩余的任务得到执行。 interruptIdleWorkers(); onShutdown(); // hook for ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } tryTerminate(); }public List shutdownNow() { List tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // STOP状态:不再接受新任务且不再执行队列中的任务。 advanceRunState(STOP); // 中断所有线程 interruptWorkers(); // 返回队列中还没有被执行的任务。 tasks = drainQueue(); } finally { mainLock.unlock(); } tryTerminate(); return tasks;}private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) { Thread t = w.thread; // w.tryLock能获取到锁,说明该线程没有在运行,因为runWorker中执行任务会先lock, // 因此保证了中断的肯定是空闲的线程。 if (!t.isInterrupted() && w.tryLock()) { try { t.interrupt(); } catch (SecurityException ignore) { } finally { w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); }}void interruptIfStarted() { Thread t; // 初始化时state == -1 if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } }}
线程池的使用
线程池的创建
我们可以通过ThreadPoolExecutor来创建一个线程池
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue) { // threadFactory用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); }
向线程池提交任务
可以使用两个方法向线程池提交任务,分别为execute()和submit()方法。execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。通过以下代码可知execute()方法输入的任务是一个Runnable类的实例。
threadsPool.execute(new Runnable() { @Override public void run() { } });
submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。
Future future = executor.submit(harReturnValuetask); try { Object s = future.get(); }catch( InterruptedException e) { // 处理中断异常 }catch( ExecutionException e) { // 处理无法执行任务异常 }finally { // 关闭线程池 executor.shutdown(); }
关闭线程池
可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。
只要调用了这两个关闭方法中的任意一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown方法来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow方法。
合理的配置线程池
要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析。
任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
任务的优先级:高、中和低。
任务的执行时间:长、中和短。
任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务应配置尽可能小的线程,如配置Ncpu+1个线程的线程池。由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先执行
如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。执行时间不同的任务可以交给不同规模的线程池来处理,或者可以使用优先级队列,让执行时间短的任务先执行。依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,等待的时间越长,则CPU空闲时间就越长,那么线程数应该设置得越大,这样才能更好地利用CPU。
建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点儿,比如几千。有时候我们系统里后台任务线程池的队列和线程池全满了,不断抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞,任务积压在线程池里。如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然,我们的系统所有的任务是用单独的服务器部署的,我们使用不同规模的线程池完成不同类型的任务,但是出现这样问题时也会影响到其他任务。
线程池的监控
如果在系统中大量使用线程池,则有必要对线程池进行监控,方便在出现问题时,可以根据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的时候可以使用以下属性
taskCount:线程池需要执行的任务数量。 completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于taskCount。 largestPoolSize:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。 getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所以这个大小只增不减。 getActiveCount:获取活动的线程数。
通过扩展线程池进行监控。可以通过继承线程池来自定义线程池,重写线程池的beforeExecute、afterExecute和terminated方法,也可以在任务执行前、执行后和线程池关闭前执行一些代码来进行监控。例如,监控任务的平均执行时间、最大执行时间和最小执行时间等。
“Java线程池是怎么工作的”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!