文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

MySQL查询优化的简介

2024-04-02 19:55

关注

这篇文章给大家分享的是有关MySQL查询优化的简介的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

前言

MySQL是关系性数据库中的一种,查询功能强,数据一致性高,数据安全性高,支持二级索引。但性能方面稍逊于非关系性数据库,特别是百万级别以上的数据,很容易出现查询慢的现象。这时候需要分析查询慢的原因,一般情况下是程序员sql写的烂,或者是没有键索引,或者是索引失效等原因导致的。

这时候MySQL 提供的 EXPLAIN 命令就尤其重要, 它可以对 SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化.

而且就在查询语句前加上 Explain 就成:

EXPLAIN SELECT * FROM customer WHERE id < 100;

准备

首先需要建立两个测试用表及数据:

CREATE TABLE `customer` ( 
 `id` BIGINT(20) unsigned NOT NULL AUTO_INCREMENT,
 `name` VARCHAR(50) NOT NULL DEFAULT '',
 `age` INT(11) unsigned DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `name_index` (`name`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4

INSERT INTO customer (name, age) VALUES ('a', 1);
INSERT INTO customer (name, age) VALUES ('b', 2);
INSERT INTO customer (name, age) VALUES ('c', 3);
INSERT INTO customer (name, age) VALUES ('d', 4);
INSERT INTO customer (name, age) VALUES ('e', 5);
INSERT INTO customer (name, age) VALUES ('f', 6);
INSERT INTO customer (name, age) VALUES ('g', 7);
INSERT INTO customer (name, age) VALUES ('h', 8);
INSERT INTO customer (name, age) VALUES ('i', 9);
CREATE TABLE `orders` (
 `id` BIGINT(20) unsigned NOT NULL AUTO_INCREMENT,
 `user_id` BIGINT(20) unsigned NOT NULL DEFAULT 0, `product_name` VARCHAR(50) NOT NULL DEFAULT '',
 `productor` VARCHAR(30) NOT NULL DEFAULT '',
 PRIMARY KEY (`id`),
 KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4

INSERT INTO orders (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO orders (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO orders (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO orders (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO orders (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO orders (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO orders (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO orders (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO orders (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

EXPLAIN 输出格式

EXPLAIN 命令的输出内容大致如下:

mysql> explain select * from customer where id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 8
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

各列的含义如下:

接下来我们来重点看一下比较重要的几个字段.

select_type

最常见的查询类别应该是 SIMPLE 了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是 SIMPLE 类型, 例如:

mysql> explain select * from customer where id = 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 8
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

如果我们使用了 UNION 查询, 那么 EXPLAIN 输出 的结果类似如下:

mysql> EXPLAIN (SELECT * FROM customer WHERE id IN (1, 2, 3)) 
 -> UNION
 -> (SELECT * FROM customer WHERE id IN (3, 4, 5));
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| 1 | PRIMARY | customer | NULL | range | PRIMARY | PRIMARY | 8 | NULL | 3 | 100.00 | Using where |
| 2 | UNION | customer | NULL | range | PRIMARY | PRIMARY | 8 | NULL | 3 | 100.00 | Using where |
| NULL | UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

table

表示查询涉及的表或衍生表

type

type 字段比较重要, 它提供了判断查询是否高效的重要依据依据. 通过 type 字段, 我们判断此次查询是 全表扫描 还是 索引扫描 等.

type 常用类型

type 常用的取值有:

mysql> explain select * from customer where id = 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 8
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL
1 row in set, 1 warning (0.00 sec)

eq_ref: 此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 =, 查询效率较高. 例如:

mysql> EXPLAIN SELECT * FROM customer, order_info WHERE customer.id = order_info.user_id\G
*************************** 1. row ***************************
  id: 1
 select_type: SIMPLE
 table: order_info
 partitions: NULL
  type: index
possible_keys: user_product_detail_index
  key: user_product_detail_index
 key_len: 314
  ref: NULL
  rows: 9
 filtered: 100.00
 Extra: Using where; Using index
*************************** 2. row ***************************
  id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
  type: eq_ref
possible_keys: PRIMARY
  key: PRIMARY
 key_len: 8
  ref: test.order_info.user_id
  rows: 1
 filtered: 100.00
 Extra: NULL
2 rows in set, 1 warning (0.00 sec)

ref: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀 规则索引的查询.

例如下面这个例子中, 就使用到了 ref 类型的查询:

mysql> EXPLAIN SELECT * FROM customer, order_info WHERE customer.id = order_info.user_id AND order_info.user_id = 5\G
*************************** 1. row ***************************
  id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
  type: const
possible_keys: PRIMARY
  key: PRIMARY
 key_len: 8
  ref: const
  rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
  id: 1
 select_type: SIMPLE
 table: order_info
 partitions: NULL
  type: ref
possible_keys: user_product_detail_index
  key: user_product_detail_index
 key_len: 9
  ref: const
  rows: 1
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.01 sec)

range: 表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中.当 type 是 range 时, 那么 EXPLAIN 输出的 ref 字段为 NULL, 并且 key_len 字段是此次查询中使用到的索引的最长的那个.

例如下面的例子就是一个范围查询:

mysql> EXPLAIN SELECT * FROM customer WHERE id BETWEEN 2 AND 8 \G
*************************** 1. row ***************************
  id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
  type: range
possible_keys: PRIMARY
  key: PRIMARY
 key_len: 8
  ref: NULL
  rows: 7
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

index: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.

index 类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index.

例如:

mysql> EXPLAIN SELECT name FROM customer \G
*************************** 1. row ***************************
  id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
  type: index
possible_keys: NULL
  key: name_index
 key_len: 152
  ref: NULL
  rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.00 sec)

上面的例子中, 我们查询的 name 字段恰好是一个索引, 因此我们直接从索引中获取数据就可以满足查询的需求了, 而不需要查询表中的数据. 因此这样的情况下, type 的值是 index, 并且 Extra 的值是 Using index.

下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.

mysql> EXPLAIN SELECT age FROM customer WHERE age = 20 \G*************************** 1. row ***************************
  id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL
  type: ALL
possible_keys: NULL
  key: NULL
 key_len: NULL
  ref: NULL
  rows: 10
 filtered: 10.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

type 类型的性能比较

通常来说, 不同的 type 类型的性能关系如下:

ALL < index < range ~ index_merge < ref < eq_ref < const < system

ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.

而 index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

对程序员来说,若保证查询至少达到range级别或者最好能达到ref则算是一个优秀而又负责的程序员。

possible_key

spossible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.

key_len 的计算规则如下:

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' \G
*************************** 1. row ***************************
   id: 1
 select_type: SIMPLE
  table: order_info
 partitions: NULL
   type: range
possible_keys: user_product_detail_index
   key: user_product_detail_index
  key_len: 9
   ref: NULL
   rows: 5
  filtered: 11.11
  Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

不过此查询语句 WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' 中, 因为先进行 user_id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 user_id, 因此在 EXPLAIN 中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20) NOT NULL DEFAULT '0', 则 key_length 应该是8.

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' \G;
*************************** 1. row ***************************
   id: 1
 select_type: SIMPLE
  table: order_info
 partitions: NULL
   type: ref
possible_keys: user_product_detail_index
   key: user_product_detail_index
  key_len: 161
   ref: const,const
   rows: 2
  filtered: 100.00
  Extra: Using index
1 row in set, 1 warning (0.00 sec)

这次的查询中, 我们没有使用到范围查询, key_len 的值为 161. 为什么呢? 因为我们的查询条件 WHERE user_id = 1 AND product_name = 'p1' 中, 仅仅使用到了联合索引中的前两个字段, 因此 keyLen(user_id) + keyLen(product_name) = 9 + 50 * 3 + 2 = 161

rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.

这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

当 Extra 中有 Using filesort 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.

例如下面的例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' \G;
*************************** 1. row ***************************
   id: 1
 select_type: SIMPLE
  table: order_info
 partitions: NULL
   type: ref
possible_keys: user_product_detail_index
   key: user_product_detail_index
  key_len: 161
   ref: const,const
   rows: 2
  filtered: 100.00
  Extra: Using index
1 row in set, 1 warning (0.00 sec)

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.

如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
   id: 1
 select_type: SIMPLE
  table: order_info
 partitions: NULL
   type: index
possible_keys: NULL
   key: user_product_detail_index
  key_len: 253
   ref: NULL
   rows: 9
  filtered: 100.00
  Extra: Using index
1 row in set, 1 warning (0.00 sec)

"覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错

查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

感谢各位的阅读!关于“MySQL查询优化的简介”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯