文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用Pandas实现MySQL窗口函数的解决方法

2023-02-22 12:01

关注

一、前言

环境:
windows11 64位
Python3.9
MySQL8
pandas1.4.2

本文主要介绍 MySQL 中的窗口函数row_number()lead()/lag()rank()/dense_rank()first_value()count()sum()如何使用pandas实现,同时二者又有什么区别。

注:Python是很灵活的语言,达成同一个目标或有多种途径,我提供的只是其中一种解决方法,大家有其他的方法也欢迎留言讨论。

二、语法对比

数据表

本次使用的数据如下。
使用 Python 构建该数据集的语法如下:

import pandas as pd
import numpy as np

df1 = pd.DataFrame({ 'col1' : list(range(1,7))
                    ,'col2' : ['AA','AA','AA','BB','BB','BB']#list('AABCA')
                    ,'col3' : ['X',np.nan,'Da','Xi','Xa','xa']
                    ,'col4' : [10,5,3,5,2,None]
                    ,'col5' : [90,60,60,80,50,50]
                    ,'col6' : ['Abc','Abc','bbb','Cac','Abc','bbb']
                   })
df2 = pd.DataFrame({'col2':['AA','BB','CC'],'col7':[1,2,3],'col4':[5,6,7]})
df3 = pd.DataFrame({'col2':['AA','DD','CC'],'col8':[5,7,9],'col9':['abc,bcd,fgh','rst,xyy,ijk','nml,opq,wer']})

注:直接将代码放 jupyter 的 cell 跑即可。后文都直接使用df1df2df3调用对应的数据。

使用 MySQL 构建该数据集的语法如下:

with t1 as(
  select  1 as col1, 'AA' as col2, 'X' as col3, 10.0 as col4, 90 as col5, 'Abc' as col6 union all
  select  2 as col1, 'AA' as col2, null as col3, 5.0 as col4, 60 as col5, 'Abc' as col6 union all
  select  3 as col1, 'AA' as col2, 'Da' as col3, 3.0 as col4, 60 as col5, 'bbb' as col6 union all
  select  4 as col1, 'BB' as col2, 'Xi' as col3, 5.0 as col4, 80 as col5, 'Cac' as col6 union all
  select  5 as col1, 'BB' as col2, 'Xa' as col3, 2.0 as col4, 50 as col5, 'Abc' as col6 union all
  select  6 as col1, 'BB' as col2, 'xa' as col3, null as col4, 50 as col5, 'bbb' as col6 
)
,t2 as(
  select  'AA' as col2, 1 as col7, 5 as col4 union all
  select  'BB' as col2, 2 as col7, 6 as col4 union all
  select  'CC' as col2, 3 as col7, 7 as col4 
)
,t3 as(
  select  'AA' as col2, 5 as col8, 'abc,bcd,fgh' as col9 union all
  select  'DD' as col2, 7 as col8, 'rst,xyy,ijk' as col9 union all
  select  'CC' as col2, 9 as col8, 'nml,opq,wer' as col9 
)
select * from t1;

注:直接将代码放 MySQL 代码运行框跑即可。后文跑 SQL 代码时,默认带上数据集(代码的1~18行),仅展示查询语句,如第19行。

对应关系如下:

Python 数据集MySQL 数据集
df1t1
df2t2
df3t3

row_number()

row_number()是对检索的数据计算行号,从1开始递增。一般涉及分组字段和排序字段,每一个分组里的行号都唯一。
MySQL 的row_number()函数在 Python 中可以使用groupby()+rank()实现类似的效果。

另外,需要注意一点,排序字段如果有重复值,在 MySQL 中会随机返回,而 Python 中会默认使用index列进一步排序。
具体例子如下:

1、单列分组,单列排序
当分组和排序都只有一列的时候,在 Python 中使用groupby()单列聚合加上rank()对单列进行排序即可。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘label’] = df1_1.groupby(‘col2’)[‘col5’].rank(ascending=False,method=‘first’)
df1_1[[‘col2’,‘col5’,‘label’]]
select col2,col5,row_number()over(partition by col2 order by col5 desc) label from t1;
结果

2、多列分组,单列排序
当有多列分组,则传一个列表给groupby()函数。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘label’] = df1_1.groupby([‘col2’,‘col6’])[‘col5’].rank(ascending=True,method=‘first’)
df1_1[[‘col2’,‘col6’,‘col5’,‘label’]]
select col2,col6,col5,row_number()over(partition by col2,col5 order by col5) label from t1;
结果

3、单列分组,多列排序
如果是多列排序,相对复杂一些,如下【Python1】先用sort_values()排好序,然后再用groupby()聚合,然后使用rank()将排序序号加上;而【Python2】和【Python1】前2步相同,在最后一步使用了cumcount()实现编号。

语言PythonMySQL
代码【Python1】
df1_1 = df1.copy()
df1_1[‘label’] = df1_1.sort_values([‘col6’,‘col5’],ascending=[False,True]).groupby([‘col2’])[‘col2’].rank(ascending=False,method=‘first’)
df1_1[[‘col2’,‘col6’,‘col5’,‘label’]]
【Python2】
df1_1 = df1.copy()
df1_1[‘label’] = df1_1.sort_values([‘col6’,‘col5’],ascending=[False,True]).groupby([‘col2’]).cumcount()+1
df1_1[[‘col2’,‘col6’,‘col5’,‘label’]]
select col2,col6,col5,row_number()over(partition by col2 order by col6 desc,col5) label from t1;
结果

3、多列分组,多列排序
多列分组和多列排序,直接在【3、单列分组,多列排序】的基础上,将多个分组字段添加到groupby([])中的列表即可。不再赘述。

lead()/lag()

lead()是从当前行向后取列值,也可以理解为将指定的列向上移动;而lag()则相反,是从当前行向前取列值,也可以理解为将指定的列向下移动。
配合排序,二者可以进行互换,即:

在 Python 中,可以通过shift()函数实现列值的上下移动,当传入一个正数时,列值向下移动,当传入一个负数时,列值向上移动
注:关于单列/多列分组和单列/多列排序的情况,参考row_number(),不再赘述。

1、移动1行
移动1行时,MySQL 中直接使用lead(col1)/lag(col1)即可,使用lead(col1,1)/lag(col1,1)也没问题,再结合升降序实现列值的上下移动。
在 Python 中,则使用shift(-1)shift(1)实现相同的效果。以下例子是将col1下移,所以使用shift(-1)

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘col1_2’] = df1_1.groupby([‘col2’]).col1.shift(-1)
df1_1[[‘col2’,‘col1’,‘col1_2’]].sort_values([‘col2’,‘col1’],ascending=[True,True])
【MySQL1】
select col2,col1,lead(col1)over(partition by col2 order by col1) col1_2 from t1;
【MySQL2】
select col2,col1,lag(col1)over(partition by col2 order by col1 desc) col1_2 from t1;
结果

2、移动多行
移动多行的时候,MySQL 中需要指定移动行数,如下例子,移动2行,使用lead(col1,2)lag(col1,2),再结合升降序实现列值的上下移动。
在 Python 中,则修改传递给shift()函数的参数值即可,如下例子,使用shift(2)向上移动2行。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘col1_2’] = df1_1.groupby([‘col2’]).col1.shift(2) # 通过shift控制
df1_1[[‘col2’,‘col1’,‘col1_2’]].sort_values([‘col2’,‘col1’],ascending=[True,True])
【MySQL1】
select col2,col1,lead(col1,2)over(partition by col2 order by col1 desc) col1_2 from t1;
【MySQL2】
select col2,col1,lag(col1,2)over(partition by col2 order by col1) col1_2 from t1;
结果

rank()/dense_rank()

rank()dense_rank()用于计算排名。rank()排名可能不连续,就是当有重复值的时候,会并列使用小的排名,而重复值之后的排名则按照重复个数叠加往后排,如一组数(10,20,20,30),按升序排列是(1,2,2,4);而dense_rank()的排名是连续的,还是上面的例子,按升序排列是(1,2,2,3)。
而在 Python 中,排序同样是通过rank()函数实现,只是methodrow_number()使用的不一样。实现rank()的效果,使method='min',而实现dense_rank()的效果,使用method='dense'。除了这两种和在row_number()中使用的method='first',还有averagemaxaverage的逻辑是所有值进行不重复连续排序之后,将分组内的重复值的排名进行平均,还是上面的例子,按升序排列是(1,2.5,2.5,4),maxmin相反,使用的是分组内重复值取大的排名进行排序,还是上面的例子,按升序排列是(1,3,3,4)。
同样地,排序字段如果有重复值,在 MySQL 中会随机返回,而 Python 中会默认使用index列进一步排序。

注:关于单列/多列分组和单列/多列排序的情况,参考row_number(),不再赘述。
1、rank()
Python 中使用rank(method='min')实现 MySQL 中的rank()窗口函数。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘label’] = df1_1.groupby([‘col2’])[‘col5’].rank(ascending=True,method=‘min’)
df1_1[[‘col2’,‘col5’,‘label’]]
select col2,col5,rank()over(partition by col2 order by col5) col1_2 from t1;
结果

2、dense_rank()
Python 中使用rank(method='dense')实现 MySQL 中的rank()窗口函数。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘label’] = df1_1.groupby([‘col2’])[‘col5’].rank(ascending=True,method=‘dense’)
df1_1[[‘col2’,‘col5’,‘label’]]
select col2,col5,dense_rank()over(partition by col2 order by col5) col1_2 from t1;
结果

first_value()

MySQL 中的窗口函数first_value()是取第一个值,可用于取数据默认顺序的第一个值,也可以通过排序,取某一列的最大值或最小值。
在 Pandas 中,也有相同功能的函数first()
不过,first_value()是窗口函数,不会影响表单内的其他字段,但first()时一个普通函数,只返回表单中的第一个值对应的行,所以在 Python 中要实现first_value()窗口函数相同的结果,需要将first()函数返回的结果,再通过表联结关联回原表(具体例子如下)。在 Python 中,还有一个last()函数,和first()相反,结合排序,也可以实现相同效果,和first()可互换,读者可自行测试,不再赘述。

注:关于单列/多列分组和单列/多列排序的情况,参考row_number(),不再赘述。
1、取最大值
MySQL 中,对col5降序,便可通过first_value()取得最大值。同样,在 Python 中,使用sort_values()col5进行降序,便可通过first()取得最大值,然后再merge()回原表。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_2 = df1_1.sort_values([‘col5’],ascending=[False]).groupby([‘col2’]).first().reset_index()[[‘col2’,‘col5’]] # 最好加个排序
df1[[‘col2’,‘col5’]].merge(df1_2,on = ‘col2’,how = ‘left’,suffixes=(‘’,‘_2’))
select col2,col5,first_value(col5)over(partition by col2 order by col5 desc) col5_2 from t1;
结果

2、取最小值
取最小值,则是在取最大值的基础上,改变col5的排序即可,由降序改为升序。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_2 = df1_1.sort_values([‘col5’],ascending=[True]).groupby([‘col2’]).first().reset_index()[[‘col2’,‘col5’]]
df1[[‘col2’,‘col5’]].merge(df1_2,on = ‘col2’,how = ‘left’,suffixes=(‘’,‘_2’))
select col2,col5,first_value(col5)over(partition by col2 order by col5) col5_2 from t1;
结果

count()/sum()

MySQL 的聚合函数count()sum()等,也可以加上over()实现窗口函数的效果。

在 Python 中,针对累计和累加的功能,可以使用groupby()+cumcount()groupby()+cumsum()实现(如下例子1和2),而针对分组内的计数和求和,可以通过groupby()+count()groupby()+sum()实现(如下例子3和4)。

注:关于单列/多列分组和单列/多列排序的情况,参考row_number(),不再赘述。
1、升序累计
Python 中使用sort_values()+groupby()+cumcount()实现 MySQL count(<col_name>)over(partition by <col_name> order by <col_name>)效果。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘col5_2’] = df1_1.sort_values([‘col5’,‘col1’],ascending=[True,False]).groupby(‘col2’).col5.cumcount()+1
df1_1[[‘col2’,‘col5’,‘col5_2’]]
select col2,col5,count(col5)over(partition by col2 order by col5,col1) col5_2 from t1;
结果

2、升序累加
Python 中使用sort_values()+groupby()+cumsum()实现 MySQL sum(<col_name>)over(partition by <col_name> order by <col_name>)效果。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_1[‘col5_2’] = df1_1.sort_values([‘col5’,‘col1’],ascending=[True,False]).groupby(‘col2’).col5.cumsum()
df1_1[[‘col2’,‘col5’,‘col5_2’]]
select col2,col5,sum(col5)over(partition by col2 order by col5,col1) col5_2 from t1;
结果

3、分组计数
Python 中使用sort_values()+groupby()+count()实现 MySQL count(<col_name>)over(partition by <col_name>)效果。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_2 = df1_1.sort_values([‘col5’,‘col1’],ascending=[True,False]).groupby(‘col2’).col5.count().reset_index()
df1_1[[‘col2’,‘col5’]].merge(df1_2,how=‘left’,on=‘col2’,suffixes=(‘’,‘_2’))
select col2,col5,count(col5)over(partition by col2) col5_2 from t1;
结果

4、分组求和
Python 中使用sort_values()+groupby()+sum()实现 MySQL sum(<col_name>)over(partition by <col_name>)效果。

语言PythonMySQL
代码df1_1 = df1.copy()
df1_2 = df1_1.sort_values([‘col5’,‘col1’],ascending=[True,False]).groupby(‘col2’).col5.sum().reset_index()
df1_1[[‘col2’,‘col5’]].merge(df1_2,how=‘left’,on=‘col2’,suffixes=(‘’,‘_2’))
select col2,col5,sum(col5)over(partition by col2) col5_2 from t1;
结果

三、小结

MySQL 的窗口函数效果,在 Python 中,基本都需要经过多个步骤,使用多个函数进行组合处理。窗口函数涉及到分组字段和排序字段,在 Python 中对应使用groupby()sort_values(),所以基本上在 Python 中实现窗口函数的效果都需要使用到这两个函数辅助处理数据。剩下的聚合形式就根据聚合窗口函数的特性做修改,对应关系如下:

MySQL 窗口函数Python 对应函数
row_number()rank()
lead()/lag()shift()
rank()/dense_rank()rank()
first_value()first()
count()count()、cumcount()
sum()sum()、cumsum()

到此这篇关于使用Pandas实现MySQL窗口函数的解决方法的文章就介绍到这了,更多相关Pandas 窗口函数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯