文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Spark 两种方法计算分组取Top N

2020-10-09 23:08

关注

Spark 两种方法计算分组取Top N

Spark 分组取Top N运算

大数据处理中,对数据分组后,取TopN是非常常见的运算。

下面我们以一个例子来展示spark如何进行分组取Top的运算。

1、RDD方法分组取TopN

from pyspark import SparkContext
sc = SparkContext()

准备数据,把数据转换为rdd格式

data_list = [
 (0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
 (1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
 (2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
 (3, "cat8", 135.6)
]

data = sc.parallelize(data_list)
data.collect()
[(0, "cat26", 130.9),
 (0, "cat13", 122.1),
 (0, "cat95", 119.6),
 (0, "cat105", 11.3),
 (1, "cat67", 128.5),
 (1, "cat4", 126.8),
 (1, "cat13", 112.6),
 (1, "cat23", 15.3),
 (2, "cat56", 139.6),
 (2, "cat40", 129.7),
 (2, "cat187", 127.9),
 (2, "cat68", 19.8),
 (3, "cat8", 135.6)]

对数据使用groupBy操作来分组。可以看到分组后数据为(key, list_data)

d1 = data.groupBy(lambda x:x[0])
temp = d1.collect()
print(list(temp[0][1]))
print(temp)
[(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3)]
[(0, ), (1, ), (2, ), (3, )]

使用mapValues方法对数据进行排序。

可以根据需要来取Top N 数据。

这里取Top 3 的数据

d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:3])
d2.collect()
[(0, [(0, "cat105", 11.3), (0, "cat95", 119.6), (0, "cat13", 122.1)]),
 (1, [(1, "cat23", 15.3), (1, "cat13", 112.6), (1, "cat4", 126.8)]),
 (2, [(2, "cat68", 19.8), (2, "cat187", 127.9), (2, "cat40", 129.7)]),
 (3, [(3, "cat8", 135.6)])]

使用flatmap方法把结果拉平,变成一个list返回。

d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, "cat105", 11.3),
 (0, "cat95", 119.6),
 (0, "cat13", 122.1),
 (1, "cat23", 15.3),
 (1, "cat13", 112.6),
 (1, "cat4", 126.8),
 (2, "cat68", 19.8),
 (2, "cat187", 127.9),
 (2, "cat40", 129.7),
 (3, "cat8", 135.6)]

整体代码

from pyspark import SparkContext
# sc = SparkContext()

topN = 3
data_list = [
 (0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
 (1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
 (2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
 (3, "cat8", 135.6)
]

data = sc.parallelize(data_list)
d1 = data.groupBy(lambda x:x[0])
d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:topN])
d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, "cat105", 11.3),
 (0, "cat95", 119.6),
 (0, "cat13", 122.1),
 (1, "cat23", 15.3),
 (1, "cat13", 112.6),
 (1, "cat4", 126.8),
 (2, "cat68", 19.8),
 (2, "cat187", 127.9),
 (2, "cat40", 129.7),
 (3, "cat8", 135.6)]

2、Dataframe方法分组取TopN

dataframe数据格式分组取top N,简单的方法是使用Window方法

from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window

spark = SparkSession.builder.getOrCreate()

data_list = [
 (0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
 (1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
 (2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
 (3, "cat8", 135.6)
]

根据数据创建dataframe,并给数据列命名
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"])
df.show()
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 0| cat26| 130.9|
| 0| cat13| 122.1|
| 0| cat95| 119.6|
| 0| cat105| 11.3|
| 1| cat67| 128.5|
| 1| cat4| 126.8|
| 1| cat13| 112.6|
| 1| cat23| 15.3|
| 2| cat56| 139.6|
| 2| cat40| 129.7|
| 2| cat187| 127.9|
| 2| cat68| 19.8|
| 3| cat8| 135.6|
+----+--------+----------+
  1. 使用窗口方法,分片参数为分组的key,

  2. orderBy的参数为排序的key,这里使用desc降序排列。

  3. withColumn(colName, col),为df添加一列,数据为对window函数生成的数据编号

  4. where方法取rn列值小于3的数据,即取top3数据

w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn("rn", func.row_number().over(w)).where("rn <=3")
top3.show()
+----+--------+----------+---+
|Hour|Category|TotalValue| rn|
+----+--------+----------+---+
| 0| cat26| 130.9| 1|
| 0| cat13| 122.1| 2|
| 0| cat95| 119.6| 3|
| 1| cat67| 128.5| 1|
| 1| cat4| 126.8| 2|
| 1| cat13| 112.6| 3|
| 3| cat8| 135.6| 1|
| 2| cat56| 139.6| 1|
| 2| cat40| 129.7| 2|
| 2| cat187| 127.9| 3|
+----+--------+----------+---+
### 代码汇总

from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window

spark = SparkSession.builder.getOrCreate()

data_list = [
 (0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
 (1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
 (2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
 (3, "cat8", 135.6)
]
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"])

w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn("rn", func.row_number().over(w)).where("rn <=3")

top3.show()
阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯