文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python利用pd.cut()和pd.qcut()对数据进行分箱操作

2024-04-02 19:55

关注

1.cut()可以实现类似于对成绩进行优良统计的功能,来看代码示例。

假如我们有一组学生成绩,我们需要将这些成绩分为不及格(0-59)、及格(60-70)、良(71-85)、优(86-100)这几组。这时候可以用到cut()

import numpy as np
import pandas as pd

# 我们先给 scores传入30个从0到100随机的数
scores = np.random.uniform(0,100,size=30)

# 然后使用 np.round()函数控制数据精度
scores = np.round(scores,1)

# 指定分箱的区间
grades = [0,59,70,85,100]

cuts = pd.cut(scores,grades)
print('\nscores:')
print(scores)
print('\ncuts:')
print(cuts)
# 我们还可以计算出每个箱子中有多少个数据
print('\ncats.value_counts:')
print(pd.value_counts(cuts))

======output:======

scores:
[ 6.  50.8 80.2 22.1 60.1 75.1 30.8 50.8 81.6 17.4 13.4 24.3 67.3 84.4
 63.4 21.3 17.2  3.7 40.1 12.4 15.7 23.1 67.4 94.8 72.6 12.8 81.  82.
 70.2 54.1]

cuts:
[(0, 59], (0, 59], (70, 85], (0, 59], (59, 70], ..., (0, 59], (70, 85], (70, 85], (70, 85], (0, 59]]
Length: 30
Categories (4, interval[int64]): [(0, 59] < (59, 70] < (70, 85] < (85, 100]]

cuts.value_counts:
(0, 59]      17
(70, 85]      8
(59, 70]      4
(85, 100]     1
dtype: int64

默认情况下,cat()的区间划分是左开右闭,可以传递right=False来改变哪一边是封闭的

代码示例:

cuts = pd.cut(scores,grades,right=False)

也可以通过向labels选项传递一个列表或数组来传入自定义的箱名

代码示例:

group_names = ['不及格','及格','良','优秀']
cuts = pd.cut(scores,grades,labels=group_names)

当我们不需要自定义划分区间时,而是需要根据数据中最大值和最小值计算出等长的箱子。

代码示例:

# 将成绩均匀的分在四个箱子中,precision=2的选项将精度控制在两位
cuts = pd.cut(scores,4,precision=2)

2.qcut()可以生成指定的箱子数,然后使每个箱子都具有相同数量的数据

代码示例:

import numpy as np
import pandas as pd

# 正态分布
data = np.random.randn(100)

# 分四个箱子
cuts = pd.qcut(data,4)

print('\ncuts:')
print(cuts)
print('\ncuts.value_counts:')
print(pd.value_counts(cuts))


======output:======

cuts:
[(-0.745, -0.0723], (0.889, 2.834], (-0.745, -0.0723], (0.889, 2.834], (0.889, 2.834], ..., (-0.745, -0.0723], (-0.0723, 0.889], (-3.1599999999999997, -0.745], (-0.745, -0.0723], (-0.0723, 0.889]]
Length: 100
Categories (4, interval[float64]): [(-3.1599999999999997, -0.745] < (-0.745, -0.0723] < (-0.0723, 0.889] <
                                    (0.889, 2.834]]

cuts.value_counts:
(0.889, 2.834]                   25
(-0.0723, 0.889]                 25
(-0.745, -0.0723]                25
(-3.1599999999999997, -0.745]    25
dtype: int64

到此这篇关于python利用pd.cut()和pd.qcut()对数据进行分箱操作的文章就介绍到这了,更多相关python pd.cut()和pd.qcut()分箱操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯