前言
Apache ShardingSphere 是一套开源的分布式数据库解决方案组成的生态圈,它由 JDBC、Proxy 和 Sidecar(规划中)这 3 款既能够独立部署,又支持混合部署配合使用的产品组成;接下来的几篇文章将重点分析ShardingSphere-JDBC,从数据分片,分布式主键,分布式事务,读写分离,弹性伸缩等几个方面来介绍。
简介
ShardingSphere-JDBC定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。 它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。整体架构图如下(来自官网):
ShardingSphere-JDBC包含了众多的功能模块包括数据分片,分布式主键,分布式事务,读写分离,弹性伸缩等等;作为一个数据库中间件最核心的功能当属数据分片了,ShardingSphere-JDBC提供了很多分库分表的策略和算法,接下来看看具体是如何使用这些策略的;
数据分片
作为一个开发者我们希望中间件可以帮我们屏蔽底层的细节,让我们在面对分库分表的场景下,可以像使用单库单表一样简单;当然ShardingSphere-JDBC不会让大家失望,引入了分片数据源、逻辑表等概念;
分片数据源和逻辑表
- 逻辑表:逻辑表是相对物理表来说的,通常做分表处理,某一张表会被分成多张表,比如订单表被拆分成10张表,分别是t_order_0到t_order_9,而对应的逻辑表就是
t_order
,对于开发者来说只需要使用逻辑表即可; - 分片数据源:对于分库来说,通常会有多个库,或者说是多个数据源,所以这些数据源需要被统一管理起来,引入了分片数据源的概念,常见的
ShardingDataSource
有了以上两个最基本的概念当然还不够,还需要分库分表策略算法帮助我们做路由处理;但是这两个概念可以让开发者有一种使用单库单表的感觉,就像下面这样一个简单的实例:
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,
new Properties());
Connection conn = dataSource.getConnection();
String sql = "select id,user_id,order_id from t_order where order_id = 103";
PreparedStatement preparedStatement = conn.prepareStatement(sql);
ResultSet set = preparedStatement.executeQuery();
以上根据真实数据源列表,分库分表策略生成了一个抽象数据源,可以简单理解就是ShardingDataSource
;接下来的操作和我们使用jdbc操作正常的单库单表没有任何区别;
分片策略算法
ShardingSphere-JDBC在分片策略上分别引入了分片算法、分片策略两个概念,当然在分片的过程中分片键也是一个核心的概念;在此可以简单的理解分片策略 = 分片算法 + 分片键
;至于为什么要这么设计,应该是ShardingSphere-JDBC考虑更多的灵活性,把分片算法单独抽象出来,方便开发者扩展;
分片算法
提供了抽象分片算法类:ShardingAlgorithm
,根据类型又分为:精确分片算法、区间分片算法、复合分片算法以及Hint分片算法;
- 精确分片算法:对应
PreciseShardingAlgorithm
类,主要用于处理=
和IN
的分片; - 区间分片算法:对应
RangeShardingAlgorithm
类,主要用于处理BETWEEN AND
,>
,<
,>=
,<=
分片; - 复合分片算法:对应
ComplexKeysShardingAlgorithm
类,用于处理使用多键作为分片键进行分片的场景; - Hint分片算法:对应
HintShardingAlgorithm
类,用于处理使用Hint
行分片的场景;
以上所有的算法类都是接口类,具体实现交给开发者自己;
分片策略
分片策略基本和上面的分片算法对应,包括:标准分片策略、复合分片策略、Hint分片策略、内联分片策略、不分片策略;
-
标准分片策略:对应
StandardShardingStrategy
类,提供PreciseShardingAlgorithm
和RangeShardingAlgorithm
两个分片算法,PreciseShardingAlgorithm
是必须的,RangeShardingAlgorithm
可选的;public final class StandardShardingStrategy implements ShardingStrategy { private final String shardingColumn; private final PreciseShardingAlgorithm preciseShardingAlgorithm; private final RangeShardingAlgorithm rangeShardingAlgorithm; }
-
复合分片策略:对应
ComplexShardingStrategy
类,提供ComplexKeysShardingAlgorithm
分片算法;public final class ComplexShardingStrategy implements ShardingStrategy { @Getter private final Collection
shardingColumns; private final ComplexKeysShardingAlgorithm shardingAlgorithm; } 可以发现支持多个分片键;
-
Hint分片策略:对应
HintShardingStrategy
类,通过 Hint 指定分片值而非从 SQL 中提取分片值的方式进行分片的策略;提供HintShardingAlgorithm
分片算法;public final class HintShardingStrategy implements ShardingStrategy { @Getter private final Collection
shardingColumns; private final HintShardingAlgorithm shardingAlgorithm; } -
内联分片策略:对应
InlineShardingStrategy
类,没有提供分片算法,路由规则通过表达式来实现; -
不分片策略:对应
NoneShardingStrategy
类,不分片策略;
分片策略配置类
在使用中我们并没有直接使用上面的分片策略类,ShardingSphere-JDBC分别提供了对应策略的配置类包括:
StandardShardingStrategyConfiguration
ComplexShardingStrategyConfiguration
HintShardingStrategyConfiguration
InlineShardingStrategyConfiguration
NoneShardingStrategyConfiguration
实战
有了以上相关基础概念,接下来针对每种分片策略做一个简单的实战,在实战前首先准备好库和表;
准备
分别准备两个库:ds0
、ds1
;然后每个库分别包含两个表:t_order0
,t_order1
;
CREATE TABLE `t_order0` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`user_id` bigint(20) NOT NULL,
`order_id` bigint(20) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
准备真实数据源
我们这里有两个数据源,这里都使用java代码的方式来配置:
// 配置真实数据源
Map dataSourceMap = new HashMap<>();
// 配置第一个数据源
BasicDataSource dataSource1 = new BasicDataSource();
dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
dataSource1.setUrl("jdbc:mysql://localhost:3306/ds0");
dataSource1.setUsername("root");
dataSource1.setPassword("root");
dataSourceMap.put("ds0", dataSource1);
// 配置第二个数据源
BasicDataSource dataSource2 = new BasicDataSource();
dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
dataSource2.setUrl("jdbc:mysql://localhost:3306/ds1");
dataSource2.setUsername("root");
dataSource2.setPassword("root");
dataSourceMap.put("ds1", dataSource2);
这里配置的两个数据源都是普通的数据源,最后会把dataSourceMap交给ShardingDataSourceFactory
管理;
表规则配置
表规则配置类TableRuleConfiguration
,包含了五个要素:逻辑表、真实数据节点、数据库分片策略、数据表分片策略、分布式主键生成策略;
TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration("t_order", "ds${0..1}.t_order${0..1}");
orderTableRuleConfig.setDatabaseShardingStrategyConfig(
new StandardShardingStrategyConfiguration("user_id", new MyPreciseSharding()));
orderTableRuleConfig.setTableShardingStrategyConfig(
new StandardShardingStrategyConfiguration("order_id", new MyPreciseSharding()));
orderTableRuleConfig.setKeyGeneratorConfig(new KeyGeneratorConfiguration("SNOWFLAKE", "id"));
-
逻辑表:这里配置的逻辑表就是t_order,对应的物理表有t_order0,t_order1;
-
真实数据节点:这里使用行表达式进行配置的,简化了配置;上面的配置就相当于配置了:
db0 ├── t_order0 └── t_order1 db1 ├── t_order0 └── t_order1
-
数据库分片策略:这里的库分片策略就是上面介绍的五种类型,这里使用的
StandardShardingStrategyConfiguration
,需要指定分片键和分片算法,这里使用的是精确分片算法;public class MyPreciseSharding implements PreciseShardingAlgorithm
{ @Override public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) { Integer index = shardingValue.getValue() % 2; for (String target : availableTargetNames) { if (target.endsWith(index + "")) { return target; } } return null; } } 这里的shardingValue就是user_id对应的真实值,每次和2取余;availableTargetNames可选择就是{ds0,ds1};看余数和哪个库能匹配上就表示路由到哪个库;
-
数据表分片策略:指定的**分片键(order_id)**和分库策略不一致,其他都一样;
-
分布式主键生成策略:ShardingSphere-JDBC提供了多种分布式主键生成策略,后面详细介绍,这里使用雪花算法;
配置分片规则
配置分片规则ShardingRuleConfiguration
,包括多种配置规则:表规则配置、绑定表配置、广播表配置、默认数据源名称、默认数据库分片策略、默认表分片策略、默认主键生成策略、主从规则配置、加密规则配置;
-
表规则配置 tableRuleConfigs:也就是上面配置的库分片策略和表分片策略,也是最常用的配置;
-
绑定表配置 bindingTableGroups:指分⽚规则⼀致的主表和⼦表;绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将⼤⼤提升;
-
广播表配置 broadcastTables:所有的分⽚数据源中都存在的表,表结构和表中的数据在每个数据库中均完全⼀致。适⽤于数据量不⼤且需要与海量数据的表进⾏关联查询的场景;
-
默认数据源名称 defaultDataSourceName:未配置分片的表将通过默认数据源定位;
-
默认数据库分片策略 defaultDatabaseShardingStrategyConfig:表规则配置可以设置数据库分片策略,如果没有配置可以在这里面配置默认的;
-
默认表分片策略 defaultTableShardingStrategyConfig:表规则配置可以设置表分片策略,如果没有配置可以在这里面配置默认的;
-
默认主键生成策略 defaultKeyGeneratorConfig:表规则配置可以设置主键生成策略,如果没有配置可以在这里面配置默认的;内置UUID、SNOWFLAKE生成器;
-
主从规则配置 masterSlaveRuleConfigs:用来实现读写分离的,可配置一个主表多个从表,读面对多个从库可以配置负载均衡策略;
-
加密规则配置 encryptRuleConfig:提供了对某些敏感数据进行加密的功能,提供了⼀套完整、安全、透明化、低改造成本的数据加密整合解决⽅案;
数据插入
以上准备好,就可以操作数据库了,这里执行插入操作:
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,
new Properties());
Connection conn = dataSource.getConnection();
String sql = "insert into t_order (user_id,order_id) values (?,?)";
PreparedStatement preparedStatement = conn.prepareStatement(sql);
for (int i = 1; i <= 10; i++) {
preparedStatement.setInt(1, i);
preparedStatement.setInt(2, 100 + i);
preparedStatement.executeUpdate();
}
通过以上配置的真实数据源、分片规则以及属性文件创建分片数据源ShardingDataSource
;接下来就可以像使用单库单表一样操作分库分表了,sql中可以直接使用逻辑表,分片算法会根据具体的值就行路由处理;
经过路由最终:奇数入ds1.t_order1,偶数入ds0.t_order0;以上使用了最常见的精确分片算法,下面继续看一下其他几种分片算法;
分片算法
上面的介绍的精确分片算法中,通过PreciseShardingValue
来获取当前分片键值,ShardingSphere-JDBC针对每种分片算法都提供了相应的ShardingValue
,具体包括:
- PreciseShardingValue
- RangeShardingValue
- ComplexKeysShardingValue
- HintShardingValue
区间分片算法
用在区间查询的时候,比如下面的查询SQL:
select * from t_order where order_id>2 and order_id<9
以上两个区间值2、9会直接保存到RangeShardingValue
中,这里没有指定user_id用来做库路由,所以会访问两个库;
public class MyRangeSharding implements RangeShardingAlgorithm {
@Override
public Collection doSharding(Collection availableTargetNames,
RangeShardingValue shardingValue) {
Collection result = new LinkedHashSet<>();
Range range = shardingValue.getValueRange();
// 区间开始和结束值
int lower = range.lowerEndpoint();
int upper = range.upperEndpoint();
for (int i = lower; i <= upper; i++) {
Integer index = i % 2;
for (String target : availableTargetNames) {
if (target.endsWith(index + "")) {
result.add(target);
}
}
}
return result;
}
}
可以发现会检查区间开始和结束中的每个值和2取余,是否都能和真实的表匹配;
复合分片算法
可以同时使用多个分片键,比如可以同时使用user_id和order_id作为分片键;
orderTableRuleConfig.setDatabaseShardingStrategyConfig(
new ComplexShardingStrategyConfiguration("order_id,user_id", new MyComplexKeySharding()));
orderTableRuleConfig.setTableShardingStrategyConfig(
new ComplexShardingStrategyConfiguration("order_id,user_id", new MyComplexKeySharding()));
如上在配置分库分表策略时,指定了两个分片键,用逗号隔开;分片算法如下:
public class MyComplexKeySharding implements ComplexKeysShardingAlgorithm {
@Override
public Collection doSharding(Collection availableTargetNames,
ComplexKeysShardingValue shardingValue) {
Map> map = shardingValue.getColumnNameAndShardingValuesMap();
Collection userMap = map.get("user_id");
Collection orderMap = map.get("order_id");
List result = new ArrayList<>();
// user_id,order_id分片键进行分表
for (Integer userId : userMap) {
for (Integer orderId : orderMap) {
int suffix = (userId+orderId) % 2;
for (String s : availableTargetNames) {
if (s.endsWith(suffix+"")) {
result.add(s);
}
}
}
}
return result;
}
}
Hint分片算法
在一些应用场景中,分片条件并不存在于 SQL,而存在于外部业务逻辑;可以通过编程的方式向 HintManager
中添加分片条件,该分片条件仅在当前线程内生效;
// 设置库表分片策略
orderTableRuleConfig.setDatabaseShardingStrategyConfig(new HintShardingStrategyConfiguration(new MyHintSharding()));
orderTableRuleConfig.setTableShardingStrategyConfig(new HintShardingStrategyConfiguration(new MyHintSharding()));
// 手动设置分片条件
int hitKey1[] = { 2020, 2021, 2022, 2023, 2024 };
int hitKey2[] = { 3020, 3021, 3022, 3023, 3024 };
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,
new Properties());
Connection conn = dataSource.getConnection();
for (int i = 1; i <= 5; i++) {
final int index = i;
new Thread(new Runnable() {
@Override
public void run() {
try {
HintManager hintManager = HintManager.getInstance();
String sql = "insert into t_order (user_id,order_id) values (?,?)";
PreparedStatement preparedStatement = conn.prepareStatement(sql);
// 分别添加库和表分片条件
hintManager.addDatabaseShardingValue("t_order", hitKey1[index - 1]);
hintManager.addTableShardingValue("t_order", hitKey2[index - 1]);
preparedStatement.setInt(1, index);
preparedStatement.setInt(2, 100 + index);
preparedStatement.executeUpdate();
} catch (SQLException e) {
e.printStackTrace();
}
}
}).start();
}
以上实例中,手动设置了分片条件,分片算法如下所示:
public class MyHintSharding implements HintShardingAlgorithm {
@Override
public Collection doSharding(Collection availableTargetNames,
HintShardingValue shardingValue) {
List shardingResult = new ArrayList<>();
for (String targetName : availableTargetNames) {
String suffix = targetName.substring(targetName.length() - 1);
Collection values = shardingValue.getValues();
for (int value : values) {
if (value % 2 == Integer.parseInt(suffix)) {
shardingResult.add(targetName);
}
}
}
return shardingResult;
}
}
不分片
配置NoneShardingStrategyConfiguration
即可:
orderTableRuleConfig.setDatabaseShardingStrategyConfig(new NoneShardingStrategyConfiguration());
orderTableRuleConfig.setTableShardingStrategyConfig(new NoneShardingStrategyConfiguration());
这样数据会插入每个库每张表,可以理解为广播表
分布式主键
面对多个数据库表需要有唯一的主键,引入了分布式主键功能,内置的主键生成器包括:UUID、SNOWFLAKE;
UUID
直接使用UUID.randomUUID()生成,主键没有任何规则;对应的主键生成类:UUIDShardingKeyGenerator
;
SNOWFLAKE
实现类:SnowflakeShardingKeyGenerator
;使⽤雪花算法⽣成的主键,⼆进制表⽰形式包含 4 部分,从⾼位到低位分表为:1bit 符号位、41bit 时间戳位、10bit ⼯作进程位以及 12bit 序列号位;来自官网的图片:
扩展
实现接口:ShardingKeyGenerator
,实现自己的主键生成器;
public interface ShardingKeyGenerator extends TypeBasedSPI {
Comparable> generateKey();
}
实战
使用也很简单,直接使用KeyGeneratorConfiguration
即可,配置对应的算法类型和字段名称:
orderTableRuleConfig.setKeyGeneratorConfig(new KeyGeneratorConfiguration("SNOWFLAKE", "id"));
这里使用雪花算法生成器,对应生成的字段是id;结果如下:
mysql> select * from t_order0;
+--------------------+---------+----------+
| id | user_id | order_id |
+--------------------+---------+----------+
| 589535589984894976 | 0 | 0 |
| 589535590504988672 | 2 | 2 |
| 589535590718898176 | 4 | 4 |
+--------------------+---------+----------+
分布式事务
ShardingSphere-JDBC使用分布式事务和使用本地事务没什么区别,提供了透明化的分布式事务;支持的事务类型包括:本地事务、XA事务和柔性事务,默认是本地事务;
public enum TransactionType {
LOCAL, XA, BASE
}
依赖
根据具体使用XA事务还是柔性事务,需要引入不同的模块;
org.apache.shardingsphere
sharding-transaction-xa-core
org.apache.shardingsphere
shardingsphere-transaction-base-seata-at
实现
ShardingSphere-JDBC提供了分布式事务管理器ShardingTransactionManager
,实现包括:
- XAShardingTransactionManager:基于 XA 的分布式事务管理器;
- SeataATShardingTransactionManager:基于 Seata 的分布式事务管理器;
XA 的分布式事务管理器具体实现包括:Atomikos、Narayana、Bitronix;默认是Atomikos;
实战
默认的事务类型是TransactionType.LOCAL,ShardingSphere-JDBC天生面向多数据源,本地模式其实是循环提交每个数据源的事务,不能保证数据的一致性,所以需要使用分布式事务,具体使用也很简单:
//改变事务类型为XA
TransactionTypeHolder.set(TransactionType.XA);
DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,
new Properties());
Connection conn = dataSource.getConnection();
try {
//关闭自动提交
conn.setAutoCommit(false);
String sql = "insert into t_order (user_id,order_id) values (?,?)";
PreparedStatement preparedStatement = conn.prepareStatement(sql);
for (int i = 1; i <= 5; i++) {
preparedStatement.setInt(1, i - 1);
preparedStatement.setInt(2, i - 1);
preparedStatement.executeUpdate();
}
//事务提交
conn.commit();
} catch (Exception e) {
e.printStackTrace();
//事务回滚
conn.rollback();
}
可以发现使用起来还是很简单的,ShardingSphere-JDBC会根据当前的事务类型,在提交的时候判断是走本地事务提交,还是使用分布式事务管理器ShardingTransactionManager
进行提交;
读写分离
对于同一时刻有大量并发读操作和较少写操作类型的应用系统来说,将数据库拆分为主库和从库,主库负责处理事务性的增删改操作,从库负责处理查询操作,能够有效的避免由数据更新导致的行锁,使得整个系统的查询性能得到极大的改善。
主从配置
在上面章节介绍分片规则的时候,其中有说到主从规则配置,其目的就是用来实现读写分离的,核心配置类:MasterSlaveRuleConfiguration
:
public final class MasterSlaveRuleConfiguration implements RuleConfiguration {
private final String name;
private final String masterDataSourceName;
private final List slaveDataSourceNames;
private final LoadBalanceStrategyConfiguration loadBalanceStrategyConfiguration;
}
- name:配置名称,当前使用的4.1.0版本,这里必须是主库的名称;
- masterDataSourceName:主库数据源名称;
- slaveDataSourceNames:从库数据源列表,可以配置一主多从;
- LoadBalanceStrategyConfiguration:面对多个从库,读取的时候会通过负载算法进行选择;
主从负载算法类:MasterSlaveLoadBalanceAlgorithm
,实现类包括:随机和循环;
- ROUND_ROBIN:实现类
RoundRobinMasterSlaveLoadBalanceAlgorithm
- RANDOM:实现类
RandomMasterSlaveLoadBalanceAlgorithm
实战
分别给ds0和ds1准备从库:ds01和ds11,分别配置主从同步;读写分离配置如下:
List slaveDataSourceNames0 = new ArrayList();
slaveDataSourceNames0.add("ds01");
MasterSlaveRuleConfiguration masterSlaveRuleConfiguration0 = new MasterSlaveRuleConfiguration("ds0", "ds0",
slaveDataSourceNames0);
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfiguration0);
List slaveDataSourceNames1 = new ArrayList();
slaveDataSourceNames1.add("ds11");
MasterSlaveRuleConfiguration masterSlaveRuleConfiguration1 = new MasterSlaveRuleConfiguration("ds1", "ds1",
slaveDataSourceNames1);
shardingRuleConfig.getMasterSlaveRuleConfigs().add(masterSlaveRuleConfiguration1);
这样在执行查询操作的时候会自动路由到从库,实现读写分离;
总结
本文重点介绍了ShardingSphere-JDBC的数据分片功能,这也是所有数据库中间件的核心功能;当然分布式主键、分布式事务、读写分离等功能也是必不可少的;同时ShardingSphere还引入了弹性伸缩
的功能,这是一个非常亮眼的功能,因为数据库分片本身是有状态的,所以我们在项目启动之初都固定了多少库多少表,然后通过分片算法路由到各个库表,但是业务的发展往往超乎我们的预期,这时候如果想扩表扩库会很麻烦,目前看ShardingSphere官网弹性伸缩
处于alpha开发阶段,非常期待此功能。
参考
https://shardingsphere.apache.org/document/current/cn/overview/
感谢关注
可以关注微信公众号「回滚吧代码」,第一时间阅读,文章持续更新;专注Java源码、架构、算法和面试。