在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程。现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的)
1、深度优先
英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。
深度优先遍历各个节点,需要使用到栈(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:
首先将A节点压入栈中,stack(A);
将A节点弹出,同时将A的子节点C,B压入堆中,此时B在堆的顶部,stack(B,C);
将B节点弹出,同时将B的子节点E,D压入堆中,此时D在堆的顶部,stack(D,E,C);
将D节点弹出,没有子节点压入,此时E在堆的顶部,stack(E,C);
将E节点弹出,同时将E的子节点I压入,stack(I,C);
...依次往下,最终遍历完成,Java代码大概如下:
public void depthFirst() {
Stack<Map<String, Object>> nodeStack = new Stack<Map<String, Object>>();
Map<String, Object> node = new HashMap<String, Object>();
nodeStack.add(node);
while (!nodeStack.isEmpty()) {
node = nodeStack.pop();
System.out.println(node);
//获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点
List<Map<String, Object>> children = getChildren(node);
if (children != null && !children.isEmpty()) {
for (Map child : children) {
nodeStack.push(child);
}
}
}
}
//节点使用Map存放
2、广度优先
英文缩写为BFS即Breadth First Search。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。
广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首位都可以插入和弹出节点。整个遍历过程如下:
首先将A节点插入队列中,queue(A);
将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);
将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);
将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);
将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);
...依次往下,最终遍历完成,Java代码大概如下:
public void breadthFirst() {
Deque<Map<String, Object>> nodeDeque = new ArrayDeque<Map<String, Object>>();
Map<String, Object> node = new HashMap<String, Object>();
nodeDeque.add(node);
while (!nodeDeque.isEmpty()) {
node = nodeDeque.peekFirst();
System.out.println(node);
//获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点
List<Map<String, Object>> children = getChildren(node);
if (children != null && !children.isEmpty()) {
for (Map child : children) {
nodeDeque.add(child);
}
}
}
}
//这里使用的是双端队列,和使用queue是一样的
到此这篇关于简单谈谈Java遍历树深度优先和广度优先的操作方式的文章就介绍到这了,更多相关Java遍历树的深度优先和广度优先内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!