文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python进阶TensorFlow神经网络拟合线性及非线性函数

2024-04-02 19:55

关注

一、拟合线性函数

学习率0.03,训练1000次:

学习率0.05,训练1000次:

学习率0.1,训练1000次:

可以发现,学习率为0.05时的训练效果是最好的。

生成随机坐标

1、生成x坐标

2、生成随机干扰

3、计算得到y坐标

4、画点


# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.random.rand(100)
     # 生成随机干扰
    noise = np.random.normal(0, 0.01, x_data.shape)
    #                       均值 标准差 输出的形状
     # 计算y坐标
    y_data = 0.2 * x_data + 0.3 + noise
     # 画点
    plt.scatter(x_data, y_data)

神经网络拟合

1、创建神经网络

2、设置优化器与损失函数

3、训练(根据已有数据)

4、预测(给定横坐标,预测纵坐标)


# 创建神经网络(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 为神经网络添加层
    model.add(tf.keras.layers.Dense(units=1, input_dim=1))
#                             隐藏层 神经元个数 输入神经元个数
    # 2 设置优化器与损失函数
    model.compile(optimizer=SGD(0.05), loss='mse')
#                 优化器     学习率0.05  损失函数
# SGD:随机梯度下降法
# mse:均方误差
    # 3 训练
    for i in range(1000):
        # 训练数据并返回损失
        loss = model.train_on_batch(x_data, y_data)
        # print(loss)
     # 4 预测
    y_pred = model.predict(x_data)
     # 5 显示预测结果(拟合线)
    plt.plot(x_data, y_pred, 'r-', lw=3)    #lw:线条粗细

代码


# 拟合线性函数
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.optimizers import SGD 
# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.random.rand(100) 
    # 生成随机干扰
    noise = np.random.normal(0, 0.01, x_data.shape)
    #                       均值 标准差 输出的形状
     # 计算y坐标
    y_data = 0.2 * x_data + 0.3 + noise 
    # 画点
    plt.scatter(x_data, y_data)
  
# 创建神经网络(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 为神经网络添加层
    model.add(tf.keras.layers.Dense(units=1, input_dim=1))
#                             隐藏层 神经元个数 输入神经元个数
    # 2 设置优化器与损失函数
    model.compile(optimizer=SGD(0.05), loss='mse')
#                 优化器     学习率0.05  损失函数
# SGD:随机梯度下降法
# mse:均方误差
     # 3 训练
    for i in range(1000):
        # 训练数据并返回损失
        loss = model.train_on_batch(x_data, y_data)
        # print(loss)
     # 4 预测
    y_pred = model.predict(x_data)
 
    # 5 显示预测结果(拟合线)
    plt.plot(x_data, y_pred, 'r-', lw=3)    #lw:线条粗细 
# 1、生成随机点
Produce_Random_Data()
 
# 2、神经网络训练与预测
Neural_Network()
 
plt.show()

二、拟合非线性函数

第一层10个神经元:

第一层5个神经元:

我感觉第一层5个神经元反而训练效果比10个的好。。。

生成二次随机点

步骤:

1、生成x坐标

2、生成随机干扰

3、计算y坐标

4、画散点图


# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
    #                                       增加一个维度
     # 生成噪声
    noise = np.random.normal(0, 0.02, x_data.shape)
    #                       均值 方差 
    # 计算y坐标
    y_data = np.square(x_data) + noise 
    # 画散点图
    plt.scatter(x_data, y_data)

神经网络拟合

步骤:

1、创建神经网络

2、设置优化器及损失函数

3、训练(根据已有数据)

4、预测(给定横坐标,预测纵坐标)

5、画图


# 神经网络拟合(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 添加层
    # 注:input_dim(输入神经元个数)只需要在输入层重视设置,后面的网络可以自动推断出该层的对应输入
    model.add(tf.keras.layers.Dense(units=5,  input_dim=1, activation='tanh'))
#                                   神经元个数 输入神经元个数 激活函数
    model.add(tf.keras.layers.Dense(units=1, activation='tanh')) 
    # 2 设置优化器和损失函数
    model.compile(optimizer=SGD(0.3), loss='mse')
#                 优化器     学习率     损失函数(均方误差) 
    # 3 训练
    for i in range(3000):
        # 训练一次数据,返回loss
        loss = model.train_on_batch(x_data, y_data) 
    # 4 预测
    y_pred = model.predict(x_data) 
    # 5 画图
    plt.plot(x_data, y_pred, 'r-', lw=5)

代码


# 拟合非线性函数
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.optimizers import SGD 
# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
    #                                       增加一个维度 
    # 生成噪声
    noise = np.random.normal(0, 0.02, x_data.shape)
    #                       均值 方差 
    # 计算y坐标
    y_data = np.square(x_data) + noise 
    # 画散点图
    plt.scatter(x_data, y_data) 
# 神经网络拟合(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential() 
    # 添加层
    # 注:input_dim(输入神经元个数)只需要在输入层重视设置,后面的网络可以自动推断出该层的对应输入
    model.add(tf.keras.layers.Dense(units=5, input_dim=1, activation='tanh'))
#                                   神经元个数  输入神经元个数 激活函数
    model.add(tf.keras.layers.Dense(units=1, activation='tanh'))
    #                               输出神经元个数 
    # 2 设置优化器和损失函数
    model.compile(optimizer=SGD(0.3), loss='mse')
#                 优化器     学习率     损失函数(均方误差) 
    # 3 训练
    for i in range(3000):
        # 训练一次数据,返回loss
        loss = model.train_on_batch(x_data, y_data) 
    # 4 预测
    y_pred = model.predict(x_data)
    # 5 画图
    plt.plot(x_data, y_pred, 'r-', lw=5)
# 1、生成随机点
Produce_Random_Data()
 
# 2、神经网络训练与预测
Neural_Network()
 
plt.show()

以上就是python进阶TensorFlow神经网络拟合线性及非线性函数的详细内容,更多关于TensorFlow神经网络拟合线性及非线性函数的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯