文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

我们一起聊聊幂等设计

2024-12-02 11:10

关注

1. 什么是幂等?

幂等是一个数学与计算机科学概念。

2. 为什么需要幂等

举个例子:

我们开发一个转账功能,假设我们调用下游接口超时了。一般情况下,超时可能是网络传输丢包的问题,也可能是请求时没送到,还有可能是请求到了,返回结果却丢了。这时候我们是否可以重试呢?如果重试的话,是否会多转了一笔钱呢?

转账超时

当前互联网的系统几乎都是解耦隔离后,会存在各个不同系统的相互远程调用。调用远程服务会有三个状态:成功,失败,或者超时。前两者都是明确的状态,而超时则是未知状态。我们转账超时的时候,如果下游转账系统做好幂等控制,我们发起重试,那即可以保证转账正常进行,又可以保证不会多转一笔。

其实除了转账这个例子,日常开发中,还有很多很多例子需要考虑幂等。比如:

3. 接口超时了,到底如何处理?

如果我们调用下游接口超时了,我们应该怎么处理呢?

有两种方案处理:

拿我们的转账例子来说,转账系统提供一个查询转账记录的接口,如果渠道系统调用转账系统超时时,渠道系统先去查询一下这笔记录,看下这笔转账记录成功还是失败,如果成功就走成功流程,失败再重试发起转账。

方案二:下游接口支持幂等,上游系统如果调用超时,发起重试即可。

两种方案都是挺不错的,但是如果是MQ重复消费的场景,方案一处理并不是很妥,所以,我们还是要求下游系统对外接口支持幂等。

4. 如何设计幂等

既然这么多场景需要考虑幂等,那我们如何设计幂等呢?

幂等意味着一条请求的唯一性。不管是你哪个方案去设计幂等,都需要一个全局唯一的ID,去标记这个请求是独一无二的。

4.1 全局的唯一性ID

全局唯一性ID,我们怎么去生成呢?你可以回想下,数据库主键Id怎么生成的呢?

是的,我们可以使用UUID,但是UUID的缺点比较明显,它字符串占用的空间比较大,生成的ID过于随机,可读性差,而且没有递增。

我们还可以使用雪花算法(Snowflake) 生成唯一性ID。

雪花算法是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs。这种算法由Twitter创建,并用于推文的ID。

一个Snowflake ID有64位。

雪花算法

当然,全局唯一性的ID,还可以使用百度的Uidgenerator,或者美团的Leaf。

4.2 幂等设计的基本流程

幂等处理的过程,说到底其实就是过滤一下已经收到的请求,当然,请求一定要有一个全局唯一的ID标记哈。然后,怎么判断请求是否之前收到过呢?把请求储存起来,收到请求时,先查下存储记录,记录存在就返回上次的结果,不存在就处理请求。

一般的幂等处理就是这样啦,如下:

5. 实现幂等的8种方案

幂等设计的基本流程都是类似的,我们简简单单来过一下幂等实现的8中方案哈

5.1 select+insert+主键/唯一索引冲突

日常开发中,为了实现交易接口幂等,我是这样实现的:

交易请求过来,我会先根据请求的唯一流水号 bizSeq字段,先select一下数据库的流水表

流程图如下

伪代码如下:

  1.  
  2. Rsp idempotent(Request req){ 
  3.   Object requestRecord =selectByBizSeq(bizSeq); 
  4.    
  5.   if(requestRecord !=null){ 
  6.     //拦截是重复请求 
  7.      log.info("重复请求,直接返回成功,流水号:{}",bizSeq); 
  8.      return rsp; 
  9.   } 
  10.    
  11.   try{ 
  12.     insert(req); 
  13.   }catch(DuplicateKeyException e){ 
  14.     //拦截是重复请求,直接返回成功 
  15.     log.info("主键冲突,是重复请求,直接返回成功,流水号:{}",bizSeq); 
  16.     return rsp; 
  17.   } 
  18.    
  19.   //正常处理请求 
  20.   dealRequest(req); 
  21.    
  22.   return rsp; 

为什么前面已经select查询了,还需要try...catch...捕获重复异常呢?

是因为高并发场景下,两个请求去select的时候,可能都没查到,然后都走到insert的地方啦。

当然,用唯一索引代替数据库主键也是可以的哈,都是全局唯一的ID即可。

5.2. 直接insert + 主键/唯一索引冲突

在5.1方案中,都会先查一下流水表的交易请求,判断是否存在,然后不存在再插入请求记录。如果重复请求的概率比较低的话,我们可以直接插入请求,利用主键/唯一索引冲突,去判断是重复请求。

流程图如下:

伪代码如下:

  1.  
  2. Rsp idempotent(Request req){ 
  3.    
  4.   try{ 
  5.     insert(req); 
  6.   }catch(DuplicateKeyException e){ 
  7.      //拦截是重复请求,直接返回成功 
  8.     log.info("主键冲突,是重复请求,直接返回成功,流水号:{}",bizSeq); 
  9.     return rsp; 
  10.   } 
  11.    
  12.   //正常处理请求 
  13.   dealRequest(req); 
  14.   return rsp; 

温馨提示 :

大家别搞混哈,防重和幂等设计其实是有区别的。防重主要为了避免产生重复数据,把重复请求拦截下来即可。而幂等设计除了拦截已经处理的请求,还要求每次相同的请求都返回一样的效果。不过呢,很多时候,它们的处理流程可以是类似的。

5.3 状态机幂等

很多业务表,都是有状态的,比如转账流水表,就会有0-待处理,1-处理中、2-成功、3-失败状态。转账流水更新的时候,都会涉及流水状态更新,即涉及状态机 (即状态变更图)。我们可以利用状态机实现幂等,一起来看下它是怎么实现的。

比如转账成功后,把处理中的转账流水更新为成功状态,SQL这么写:

  1. update transfr_flow set status=2 where biz_seq=‘666’ and status=1; 

简要流程图如下:

伪代码实现如下:

  1. Rsp idempotentTransfer(Request req){ 
  2.    String bizSeq = req.getBizSeq(); 
  3.    int rows"update transfr_flow set status=2 where biz_seq=#{bizSeq} and status=1;" 
  4.    if(rows==1){ 
  5.       log.info(“更新成功,可以处理该请求”); 
  6.       //其他业务逻辑处理 
  7.       return rsp; 
  8.    }else if(rows==0){ 
  9.       log.info(“更新不成功,不处理该请求”); 
  10.       //不处理,直接返回 
  11.       return rsp; 
  12.    } 
  13.     
  14.    log.warn("数据异常"
  15.    return rsp: 

状态机是怎么实现幂等的呢?

第1次请求来时,bizSeq流水号是 666,该流水的状态是处理中,值是 1,要更新为2-成功的状态,所以该update语句可以正常更新数据,sql执行结果的影响行数是1,流水状态最后变成了2。

第2请求也过来了,如果它的流水号还是 666,因为该流水状态已经2-成功的状态了,所以更新结果是0,不会再处理业务逻辑,接口直接返回。

5.4 抽取防重表

1和5.2的方案,都是建立在业务流水表上bizSeq的唯一性上。很多时候,我们业务表唯一流水号希望后端系统生成,又或者我们希望防重功能与业务表分隔开来,这时候我们可以单独搞个防重表。当然防重表也是利用主键/索引的唯一性,如果插入防重表冲突即直接返回成功,如果插入成功,即去处理请求。

5.5 token令牌

token 令牌方案一般包括两个请求阶段:

客户端请求申请获取token,服务端生成token返回

客户端带着token请求,服务端校验token

流程图如下:

客户端发起请求,申请获取token。

服务端生成全局唯一的token,保存到redis中(一般会设置一个过期时间),然后返回给客户端。

客户端带着token,发起请求。

服务端去redis确认token是否存在,一般用 redis.del(token)的方式,如果存在会删除成功,即处理业务逻辑,如果删除失败不处理业务逻辑,直接返回结果。

5.6 悲观锁(如select for update)

什么是悲观锁?

通俗点讲就是很悲观,每次去操作数据时,都觉得别人中途会修改,所以每次在拿数据的时候都会上锁。官方点讲就是,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。

悲观锁如何控制幂等的呢?就是加锁呀,一般配合事务来实现。

举个更新订单的业务场景:

假设先查出订单,如果查到的是处理中状态,就处理完业务,再然后更新订单状态为完成。如果查到订单,并且是不是处理中的状态,则直接返回

整体的伪代码如下:

  1. begin;  # 1.开始事务 
  2. select * from order where order_id='666' # 查询订单,判断状态 
  3. if(status !=处理中){ 
  4.    //非处理中状态,直接返回; 
  5.    return ; 
  6. ## 处理业务逻辑 
  7. update order set status='完成' where order_id='666' # 更新完成 
  8. commit; # 5.提交事务 

这种场景是非原子操作的,在高并发环境下,可能会造成一个业务被执行两次的问题:

当一个请求A在执行中时,而另一个请求B也开始状态判断的操作。因为请求A还未来得及更改状态,所以请求B也能执行成功,这就导致一个业务被执行了两次。

可以使用数据库悲观锁(select ...for update)解决这个问题.

  1. begin;  # 1.开始事务 
  2. select * from order where order_id='666' for update # 查询订单,判断状态,锁住这条记录 
  3. if(status !=处理中){ 
  4.    //非处理中状态,直接返回; 
  5.    return ; 
  6. ## 处理业务逻辑 
  7. update order set status='完成' where order_id='666' # 更新完成 
  8. commit; # 5.提交事务 

这里面order_id需要是索引或主键哈,要锁住这条记录就好,如果不是索引或者主键,会锁表的!

悲观锁在同一事务操作过程中,锁住了一行数据。别的请求过来只能等待,如果当前事务耗时比较长,就很影响接口性能。所以一般不建议用悲观锁做这个事情。

5.7 乐观锁

悲观锁有性能问题,可以试下乐观锁。

什么是乐观锁?

乐观锁在操作数据时,则非常乐观,认为别人不会同时在修改数据,因此乐观锁不会上锁。只是在执行更新的时候判断一下,在此期间别人是否修改了数据。

怎样实现乐观锁呢?

就是给表的加多一列version版本号,每次更新记录version都升级一下(version=version+1)。具体流程就是先查出当前的版本号version,然后去更新修改数据时,确认下是不是刚刚查出的版本号,如果是才执行更新

比如,我们更新前,先查下数据,查出的版本号是version =1

  1. select order_id,version from order where order_id='666'; 

然后使用version =1和订单Id一起作为条件,再去更新

  1. update order set version = version +1,status='P' where order_id='666' and version =1 

最后更新成功,才可以处理业务逻辑,如果更新失败,默认为重复请求,直接返回。

流程图如下:

为什么版本号建议自增的呢?

因为乐观锁存在ABA的问题,如果version版本一直是自增的就不会出现ABA的情况啦。

5.8 分布式锁

分布式锁实现幂等性的逻辑就是,请求过来时,先去尝试获得分布式锁,如果获得成功,就执行业务逻辑,反之获取失败的话,就舍弃请求直接返回成功。执行流程如下图所示:

分布式锁可以使用Redis,也可以使用ZooKeeper,不过还是Redis相对好点,因为较轻量级。

Redis分布式锁,可以使用命令SET EX PX NX + 唯一流水号实现,分布式锁的key必须为业务的唯一标识哈

Redis执行设置key的动作时,要设置过期时间哈,这个过期时间不能太短,太短拦截不了重复请求,也不能设置太长,会占存储空间。

6. HTTP的幂等

我们的接口,一般都是基于http的,所以我们再来聊聊Http的幂等吧。HTTP 请求方法主要有以下这几种,我们看下各个接口是否都是幂等的。

6.1 GET 方法

HTTP 的GET方法用于获取资源,可以类比于数据库的select查询,不应该有副作用,所以是幂等的。它不会改变资源的状态,不论你调用一次还是调用多次,效果一样的,都没有副作用。

如果你的GET方法是获取最近最新的新闻,不同时间点调用,返回的资源内容虽然不一样,但是最终对资源本质是没有影响的哈,所以还是幂等的。

6.2 HEAD 方法

HTTP HEAD和GET有点像,主要区别是HEAD不含有呈现数据,而仅仅是HTTP的头信息,所以它也是幂等的。如果想判断某个资源是否存在,很多人会使用GET,实际上用HEAD则更加恰当。即HEAD方法通常用来做探活使用。

6.3 OPTIONS方法

HTTP OPTIONS 主要用于获取当前URL所支持的方法,也是有点像查询,因此也是幂等的。

6.4 DELETE方法

HTTP DELETE 方法用于删除资源,它是的幂等的。比如我们要删除id=666的帖子,一次执行和多次执行,影响的效果是一样的呢。

6.5 POST 方法

HTTP POST 方法用于创建资源,可以类比于提交信息,显然一次和多次提交是有副作用,执行效果是不一样的,不满足幂等性。

比如:POST http://www.tianluo.com/articles的语义是在http://www.tianluo.com/articles下创建一篇帖子,HTTP 响应中应包含帖子的创建状态以及帖子的 URI。两次相同的POST请求会在服务器端创建两份资源,它们具有不同的 URI;所以,POST方法不具备幂等性。

6.6 PUT 方法

HTTP PUT 方法用于创建或更新操作,所对应的URI是要创建或更新的资源本身,有副作用,它应该满足幂等性。

比如:PUT http://www.tianluo.com/articles/666的语义是创建或更新 ID 为666的帖子。对同一 URI 进行多次 PUT 的副作用和一次 PUT 是相同的;因此,PUT 方法具有幂等性。

参考资料

[1]弹力设计篇之“幂等性设计”: https://time.geekbang.org/column/article/4050

 

来源:捡田螺的小男孩内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯