文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python机器学习NLP自然语言处理基本操作电影影评分析

2024-04-02 19:55

关注

概述

从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁.

在这里插入图片描述

RNN

RNN (Recurrent Neural Network), 即循环神经网络. RNN 相较于 CNN, 可以帮助我们更好的处理序列信息, 挖掘前后信息之间的联系. 对于 NLP 这类的任务, 语料的前后概率有极大的联系. 比如: “明天天气真好” 的概率 > “明天天气篮球”.

在这里插入图片描述

权重共享

传统神经网络:

在这里插入图片描述

RNN:

在这里插入图片描述

RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

计算过程

在这里插入图片描述

计算状态 (State)

在这里插入图片描述

计算输出:

在这里插入图片描述

LSTM

LSTM (Long Short Term Memory), 即长短期记忆模型. LSTM 是一种特殊的 RNN 模型, 解决了长序列训练过程中的梯度消失和梯度爆炸的问题. 相较于普通 RNN, LSTM 能够在更长的序列中有更好的表现. 相比 RNN 只有一个传递状态 ht, LSTM 有两个传递状态: ct (cell state) 和 ht (hidden state).

在这里插入图片描述

阶段

LSTM 通过门来控制传输状态。

LSTM 总共分为三个阶段:

代码

预处理


import pandas as pd
import re
from bs4 import BeautifulSoup
from sklearn.model_selection import train_test_split
import tensorflow as tf
# 停用词
stop_words = pd.read_csv("data/stopwords.txt", index_col=False, quoting=3, sep="\n", names=["stop_words"])
stop_words = [word.strip() for word in stop_words["stop_words"].values]
# 用pandas读取训练数据
def load_data():
    # 语料
    data = pd.read_csv("data/labeledTrainData.tsv", sep="\t", escapechar="\\")
    print(data[:5])
    print("评论数量:", len(data))
    return data
def pre_process(text):
    # 去除网页链接
    text = BeautifulSoup(text, "html.parser").get_text()
    # 去除标点
    text = re.sub("[^a-zA-Z]", " ", text)
    # 分词
    words = text.lower().split()
    # 去除停用词
    words = [w for w in words if w not in stop_words]
    return " ".join(words)
def split_data():
    # 读取文件
    data = pd.read_csv("data/train.csv")
    print(data.head())
    # 实例化
    tokenizer = tf.keras.preprocessing.text.Tokenizer()
    # 拟合
    tokenizer.fit_on_texts(data["review"])
    # 词袋
    word_index = tokenizer.word_index
    print(word_index)
    print(len(word_index))
    # 转换成数组
    sequence = tokenizer.texts_to_sequences(data["review"])
    # 填充
    character = tf.keras.preprocessing.sequence.pad_sequences(sequence, maxlen=200)
    # 标签转换
    labels = tf.keras.utils.to_categorical(data["sentiment"])
    # 分割数据集
    X_train, X_test, y_train, y_test = train_test_split(character, labels, test_size=0.2,
                                                        random_state=0)
    return X_train, X_test, y_train, y_test
if __name__ == '__main__':
    # #
    # data = load_data()
    # data["review"] = data["review"].apply(pre_process)
    # print(data.head())
    #
    # # 保存
    # data.to_csv("data.csv")
    split_data()

主函数


import tensorflow as tf
from lstm_pre_processing import split_data
def main():
    # 读取数据
    X_train, X_test, y_train, y_test = split_data()
    print(X_train[:5])
    print(y_train[:5])
    # 超参数
    EMBEDDING_DIM = 200  # embedding 维度
    optimizer = tf.keras.optimizers.RMSprop()  # 优化器
    loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 损失
    # 模型
    model = tf.keras.Sequential([
        tf.keras.layers.Embedding(73424, EMBEDDING_DIM),
        tf.keras.layers.LSTM(200, dropout=0.2, recurrent_dropout=0.2),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(64, activation="relu"),
        tf.keras.layers.Dense(2, activation="softmax")
    ])
    model.build(input_shape=[None, 20])
    print(model.summary())
    # 组合
    model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
    # 训练
    model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=32)
    # 保存模型
    model.save("movie_model.h5")
if __name__ == '__main__':
    # 主函数
    main()

输出结果:


2021-09-14 22:20:56.974310: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
   Unnamed: 0      id  sentiment                                             review
0           0  5814_8          1  stuff moment mj ve started listening music wat...
1           1  2381_9          1  classic war worlds timothy hines entertaining ...
2           2  7759_3          0  film starts manager nicholas bell investors ro...
3           3  3630_4          0  assumed praised film filmed opera didn read do...
4           4  9495_8          1  superbly trashy wondrously unpretentious explo...
73423
[[15958   623 12368  4459   622   835    30   152  2097  2408 35364 57143
    892  2997   766 42223   967   266 25276   157   108   696  1631   198
   2576  9850  3745    27    52  3789  9503   696   526    52   354   862
    474    38     2   101 11027   696  6456 22390   969  5873  5376  4044
    623  1401  2069   718   618    92    96   138  1345   714    96    18
    123  1770   518  3314   354   983  1888   520    83    73   983     2
     28 28635  1044  2054   401  1071    85  8565  8957  7226   804    46
    224   447  2113  2691  5742    10     5  3217   943  5045   980   373
     28   873   438   389    41    23    19    56   122     9   253 27176
   2149    19    90 57144    53  4874   696  6558   136  2067 10682    48
    518  1482     9  3668  1587  3786     2   110    10   506 25150 20744
    340    33   316    17  4824  3892   978    14 10150  2596   766 42223
   5082  4784   700   198  6276  5254   700   198  2334   696 20879     5
     86    30     2   583  2872 30601    30    86    28    83    73    32
     96    18     2   224   708    30   167     7  3791   216    45   513
      2  2310   513  1860  4536  1925   414  1321   578  7434   851   696
    997  5354 57145   162    30     2    91  1839]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1   357   684
     28  3027 10371  5801 20987 21481 19800     1  3027 10371 21481 19800
   1719   204    49   168   250  7355  1547   374   401  5415    24  1719
     24    49   168  7355  1547  3610 21481 19800   123   204    49   168
   1102  1547   656   213  5432  5183    61     4 66166    20    36    56
      7  5183  2025   116  5031    11    45   782]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0  2189     1   586
   2189    15  1855   615   400  5394  3797 23866  2892   481  2892   810
  22020 17820     1   741   231    20   746  2028  1040  6089   816  5555
  41772  1762    26   811   288     8   796    45]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0    85   310  1734    78  1906    78  1906  1412  1985
     78  7644  1412   244  9287  7092  6374  2584  6183  3795  3080  1288
   2217  3534  6005  4851  1543   762  1797 26144   699   237  6745     7
   1288  1415  9003  5623   237  1669 17987   874   421   234  1278   347
   9287  1609  7100  1065    75  9800  3344    76  5021    47   380  3015
  14366  6523  1396   851 22330  3465 20861  7106  6374   340    60 19035
   3089  5081     3     7  1695 10735  3582    92  6374   176  8348    60
   1491 11540 28826  1847   464  4099    22  3561    51    22  1538  1027
  38926  2195  1966  3089    33 19894   287   142  6374   184    37  4025
     67   325    37   421   549 21976    28  7744  2466 31533    27  2836
   1339  6374 14805  1670  4666    60    33    12]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1    27    52
   4639     9  5774  1545  8575   855 10463  2688 21019  1542  1701   653
   9765     9   189   706  2212 18342   566   437  2639  4311  4504 26110
    307   496   893   317     1    27    52   587]]
[[0. 1.]
 [0. 1.]
 [0. 1.]
 [1. 0.]
 [0. 1.]]
2021-09-14 22:21:02.212681: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-09-14 22:21:02.213245: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: /usr/lib/x86_64-linux-gnu/libcuda.so.1: file too short; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64/:/usr/lib/x86_64-linux-gnu
2021-09-14 22:21:02.213268: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
2021-09-14 22:21:02.213305: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (5aa046a4f47b): /proc/driver/nvidia/version does not exist
2021-09-14 22:21:02.213624: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX512F
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-14 22:21:02.216309: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, None, 200)         14684800  
_________________________________________________________________
lstm (LSTM)                  (None, 200)               320800    
_________________________________________________________________
dropout (Dropout)            (None, 200)               0         
_________________________________________________________________
dense (Dense)                (None, 64)                12864     
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 130       
=================================================================
Total params: 15,018,594
Trainable params: 15,018,594
Non-trainable params: 0
_________________________________________________________________
None
2021-09-14 22:21:02.515404: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2021-09-14 22:21:02.547745: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2300000000 Hz
Epoch 1/2
313/313 [==============================] - 97s 302ms/step - loss: 0.5112 - accuracy: 0.7510 - val_loss: 0.3607 - val_accuracy: 0.8628
Epoch 2/2
313/313 [==============================] - 94s 300ms/step - loss: 0.2090 - accuracy: 0.9236 - val_loss: 0.3078 - val_accuracy: 0.8790

以上就是Python机器学习NLP自然语言处理基本操作电影影评分析的详细内容,更多关于NLP自然语言处理资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯