文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

反向传播BP学习算法Gradient Descent的推导过程

2024-04-02 19:55

关注

BP算法是适用于多层神经网络的一种算法,它是建立在梯度下降法的基础上的。本文着重推导怎样利用梯度下降法来minimise Loss Function。

给出多层神经网络的示意图:

1.定义Loss Function

每一个输出都对应一个损失函数L,将所有L加起来就是total loss。

那么每一个L该如何定义呢?这里还是采用了交叉熵,如下所示:

最终Total Loss的表达式如下:

2.Gradient Descent

L对应了一个参数,即Network parameters θ(w1,w2…b1,b2…),那么Gradient Descent就是求出参数 θ∗来minimise Loss Function,即:

梯度下降的具体步骤为:

图源:李宏毅机器学习讲稿

3.求偏微分

从上图可以看出,这里难点主要是求偏微分,由于L是所有损失之和,因此我们只需要对其中一个损失求偏微分,最后再求和即可。

先抽取一个简单的神经元来解释:

因为我们并不知道后面到底有多少层,也不知道情况到底有多复杂,我们不妨先取一种最简单的情况,如下所示:

4.反向传播

l对两个z的偏导我们假设是已知的,并且在这里是作为输入,三角形结构可以理解为一个乘法运算电路,其放大系数为 σ′(z)。但是在实际情况中,l对两个z的偏导是未知的。假设神经网络最终的结构就是如上图所示,那么我们的问题已经解决了:

其中:

但是假如该神经元不是最后一层,我们又该如何呢?比如又多了一层,如下所示:

原理跟上面类似,如下所示:

那假设我们再加一层呢?再加两层呢?再加三层呢?。。。,情况还是一样的,还是先求l对最后一层z的导数,乘以权重相加后最后再乘上 σ′(z′′,z′′′,...)即可。

最后给一个实例:

它的反向传播图长这样:

我们不难发现,这种计算方式很清楚明了地体现了“反向传播”四个字。好了,目标达成!!

5.总结

以上就是反向传播BP学习算法-Gradient Descent的推导过程的详细内容,更多关于BP反向传播Gradient Descent推导的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯