文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

了解随机游走模型和移动平均过程(Python)

2024-12-24 16:50

关注

[[326745]]

随机游走模型

随机游走模型由以下公式表示:

换句话说,当前时刻t的位置是前一时刻(t-1)的位置与噪声(用z表示)之和。这里我们假设噪声是正态分布的(均值为0,方差为1)。

我们从0开始随机游走,也就是说,任何时间点都是该时间之前所有噪声的和。数学上表示为:

让我们在Python中模拟随机游走。

首先,我们导入所需的Python库:

  1. from statsmodels.graphics.tsaplots import plot_acf 
  2. from statsmodels.tsa.arima_process import ArmaProcess 
  3. from statsmodels.tsa.stattools import acf 
  4. import matplotlib.pyplot as plt 
  5. import numpy as np 
  6.  
  7. %matplotlib inline 

然后,我们生成一个包含1000个数据点的数据集。起点是0,我们将随机噪声添加到上一个点以生成下一个点:

  1. steps = np.random.standard_normal(1000) 
  2. steps[0]=0 
  3. random_walk = np.cumsum(steps) 

绘制数据集的Python代码如下:

  1. plt.figure(figsize=[10, 7.5]); # Set dimensions for figure 
  2. plt.plot(random_walk) 
  3. plt.title("Simulated Random Walk") 
  4. plt.show() 

模拟随机游走

你的随机行走可能与上面的图不同,因为噪声是随机的。

现在,让我们看看我们的随机游走的自相关图(或相关图):

  1. random_walk_acf_coef = acf(random_walk) 
  2. plot_acf(random_walk, lags=20); 

随机游走的相关图

不管你的随机游走看起来像什么,你都应该得到一个非常相似的相关图。

现在,一切都指向数据集中的趋势。我们可以改变这种趋势吗?答案是肯定的。

让我们在Python中进行验证。

  1. random_walk_diff = np.diff(random_walk, n=1

然后我们绘制结果:

  1. plt.figure(figsize=[10, 7.5]); # Set dimensions for figure 
  2. plt.plot(random_walk_diff) 
  3. plt.title('Noise') 
  4. plt.show() 

如您所见,上面的图没有趋势,也没有季节性,是一个完全随机的过程。

查看相关图的python代码如下:

  1. plot_acf(random_walk_diff,lags = 20); 

我们看到这是一个纯随机过程的相关图,其中自相关系数在滞后1处下降。

移动平均过程

我们先来直观了解一下什么是移动平均过程。

假设你把一块石头扔进一个池塘里,你要追踪水面上一滴水的位置。当石头撞击水面时,会形成波纹,所以我们要跟踪的水滴会上下移动。让我们假设波纹只持续两秒钟,在这两秒钟之后,水面就会完全变平。

我们的水滴位置可以表示为:

上面的方程表示,X在t时刻的位置取决于t时刻的噪声,加上t-1时刻的噪声(有一定的权重THETA),加上t-2时刻的噪声(有一定的权值)。

这被称为二阶移动平均过程,可以表示为MA(2)。

通用表示法是MA(q)。在上面的示例中,q = 2。

让我们在Python中模拟此过程。具体来说,我们将模拟以下过程:

这是一个二阶移动平均过程,我们指定了权重。您可以随意更改权重,并对参数进行试验。

我们从指定滞后开始,我们用的是2。

  1. ar2 = np.array([2]) 

然后,我们指定权重,权重为[1、0.9、0.3]。

  1. ma2 = np.array([1, 0.9, 0.3]) 

最后,我们模拟该过程并生成1000个数据点:

  1. MA2_process = ArmaProcess(ar2, ma2).generate_sample(nsample=1000

现在,让我们可视化该过程及其相关图:

  1. plt.figure(figsize=[10, 7.5]); # Set dimensions for figure 
  2. plt.plot(MA2_process) 
  3. plt.title('Moving Average Process of Order 2') 
  4. plt.show() 
  5.  
  6. plot_acf(MA2_process, lags=20); 

由于噪声是随机产生的,因此您的图形可能与我的不同。但相关图应与下图类似:

正如您所注意到的,相关性在滞后2之前是显著的。这很有意义,因为我们指定了滞后为2。

这意味着您可以使用相关图来推断时间序列的滞后。如果您看到滞后q之后相关性并不显著,那么您可以将时间序列建模为MA(q)过程。

最后

通过本文,您了解了随机游走是什么以及如何对其进行模拟。此外,您还学习了移动平均过程,并了解了如何对其建模。

 

来源:今日头条内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯