文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

7个流行的Python强化学习算法及代码实现详解

2023-01-28 12:02

关注

目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。 这些算法已被用于在游戏、机器人和决策制定等各种应用中,并且这些流行的算法还在不断发展和改进,本文我们将对其做一个简单的介绍。

1、Q-learning

Q-learning:Q-learning 是一种无模型、非策略的强化学习算法。 它使用 Bellman 方程估计最佳动作值函数,该方程迭代地更新给定状态动作对的估计值。 Q-learning 以其简单性和处理大型连续状态空间的能力而闻名。

下面是一个使用 Python 实现 Q-learning 的简单示例:

importnumpyasnp
 
 # Define the Q-table and the learning rate
 Q=np.zeros((state_space_size, action_space_size))
 alpha=0.1
 
 # Define the exploration rate and discount factor
 epsilon=0.1
 gamma=0.99
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     whilenotdone:
         # Choose an action using an epsilon-greedy policy
         ifnp.random.uniform(0, 1) <epsilon:
             action=np.random.randint(0, action_space_size)
         else:
             action=np.argmax(Q[current_state])
 
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
 
         # Update the Q-table using the Bellman equation
         Q[current_state, action] =Q[current_state, action] +alpha* (reward+gamma*np.max(Q[next_state]) -Q[current_state, action])
 
         current_state=next_state

上面的示例中,state_space_size 和 action_space_size 分别是环境中的状态数和动作数。 num_episodes 是要为运行算法的轮次数。 initial_state 是环境的起始状态。 take_action(current_state, action) 是一个函数,它将当前状态和一个动作作为输入,并返回下一个状态、奖励和一个指示轮次是否完成的布尔值。

在 while 循环中,使用 epsilon-greedy 策略根据当前状态选择一个动作。 使用概率 epsilon选择一个随机动作,使用概率 1-epsilon选择对当前状态具有最高 Q 值的动作。

采取行动后,观察下一个状态和奖励,使用Bellman方程更新q。 并将当前状态更新为下一个状态。这只是 Q-learning 的一个简单示例,并未考虑 Q-table 的初始化和要解决的问题的具体细节。

2、SARSA

SARSA:SARSA 是一种无模型、基于策略的强化学习算法。 它也使用Bellman方程来估计动作价值函数,但它是基于下一个动作的期望值,而不是像 Q-learning 中的最优动作。 SARSA 以其处理随机动力学问题的能力而闻名。

importnumpyasnp
 
 # Define the Q-table and the learning rate
 Q=np.zeros((state_space_size, action_space_size))
 alpha=0.1
 
 # Define the exploration rate and discount factor
 epsilon=0.1
 gamma=0.99
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     action=epsilon_greedy_policy(epsilon, Q, current_state)
     whilenotdone:
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
         # Choose next action using epsilon-greedy policy
         next_action=epsilon_greedy_policy(epsilon, Q, next_state)
         # Update the Q-table using the Bellman equation
         Q[current_state, action] =Q[current_state, action] +alpha* (reward+gamma*Q[next_state, next_action] -Q[current_state, action])
         current_state=next_state
         action=next_action

state_space_size和action_space_size分别是环境中的状态和操作的数量。num_episodes是您想要运行SARSA算法的轮次数。Initial_state是环境的初始状态。take_action(current_state, action)是一个将当前状态和作为操作输入的函数,并返回下一个状态、奖励和一个指示情节是否完成的布尔值。

在while循环中,使用在单独的函数epsilon_greedy_policy(epsilon, Q, current_state)中定义的epsilon-greedy策略来根据当前状态选择操作。使用概率 epsilon选择一个随机动作,使用概率 1-epsilon对当前状态具有最高 Q 值的动作。

上面与Q-learning相同,但是采取了一个行动后,在观察下一个状态和奖励时它然后使用贪心策略选择下一个行动。并使用Bellman方程更新q表。

3、DDPG

DDPG 是一种用于连续动作空间的无模型、非策略算法。 它是一种actor-critic算法,其中actor网络用于选择动作,而critic网络用于评估动作。 DDPG 对于机器人控制和其他连续控制任务特别有用。

importnumpyasnp
 fromkeras.modelsimportModel, Sequential
 fromkeras.layersimportDense, Input
 fromkeras.optimizersimportAdam
 
 # Define the actor and critic models
 actor=Sequential()
 actor.add(Dense(32, input_dim=state_space_size, activation='relu'))
 actor.add(Dense(32, activation='relu'))
 actor.add(Dense(action_space_size, activation='tanh'))
 actor.compile(loss='mse', optimizer=Adam(lr=0.001))
 
 critic=Sequential()
 critic.add(Dense(32, input_dim=state_space_size, activation='relu'))
 critic.add(Dense(32, activation='relu'))
 critic.add(Dense(1, activation='linear'))
 critic.compile(loss='mse', optimizer=Adam(lr=0.001))
 
 # Define the replay buffer
 replay_buffer= []
 
 # Define the exploration noise
 exploration_noise=OrnsteinUhlenbeckProcess(size=action_space_size, theta=0.15, mu=0, sigma=0.2)
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     whilenotdone:
         # Select an action using the actor model and add exploration noise
         action=actor.predict(current_state)[0] +exploration_noise.sample()
         action=np.clip(action, -1, 1)
 
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
 
         # Add the experience to the replay buffer
         replay_buffer.append((current_state, action, reward, next_state, done))
 
         # Sample a batch of experiences from the replay buffer
         batch=sample(replay_buffer, batch_size)
 
         # Update the critic model
         states=np.array([x[0] forxinbatch])
         actions=np.array([x[1] forxinbatch])
         rewards=np.array([x[2] forxinbatch])
         next_states=np.array([x[3] forxinbatch])
 
         target_q_values=rewards+gamma*critic.predict(next_states)
         critic.train_on_batch(states, target_q_values)
 
         # Update the actor model
         action_gradients=np.array(critic.get_gradients(states, actions))
         actor.train_on_batch(states, action_gradients)
 
         current_state=next_state

在本例中,state_space_size和action_space_size分别是环境中的状态和操作的数量。num_episodes是轮次数。Initial_state是环境的初始状态。Take_action (current_state, action)是一个函数,它接受当前状态和操作作为输入,并返回下一个操作。

4、A2C

A2C(Advantage Actor-Critic)是一种有策略的actor-critic算法,它使用Advantage函数来更新策略。 该算法实现简单,可以处理离散和连续的动作空间。

importnumpyasnp
 fromkeras.modelsimportModel, Sequential
 fromkeras.layersimportDense, Input
 fromkeras.optimizersimportAdam
 fromkeras.utilsimportto_categorical
 
 # Define the actor and critic models
 state_input=Input(shape=(state_space_size,))
 actor=Dense(32, activation='relu')(state_input)
 actor=Dense(32, activation='relu')(actor)
 actor=Dense(action_space_size, activation='softmax')(actor)
 actor_model=Model(inputs=state_input, outputs=actor)
 actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001))
 
 state_input=Input(shape=(state_space_size,))
 critic=Dense(32, activation='relu')(state_input)
 critic=Dense(32, activation='relu')(critic)
 critic=Dense(1, activation='linear')(critic)
 critic_model=Model(inputs=state_input, outputs=critic)
 critic_model.compile(loss='mse', optimizer=Adam(lr=0.001))
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     done=False
     whilenotdone:
         # Select an action using the actor model and add exploration noise
         action_probs=actor_model.predict(np.array([current_state]))[0]
         action=np.random.choice(range(action_space_size), p=action_probs)
 
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
 
         # Calculate the advantage
         target_value=critic_model.predict(np.array([next_state]))[0][0]
         advantage=reward+gamma*target_value-critic_model.predict(np.array([current_state]))[0][0]
 
         # Update the actor model
         action_one_hot=to_categorical(action, action_space_size)
         actor_model.train_on_batch(np.array([current_state]), advantage*action_one_hot)
 
         # Update the critic model
         critic_model.train_on_batch(np.array([current_state]), reward+gamma*target_value)
 
         current_state=next_state

在这个例子中,actor模型是一个神经网络,它有2个隐藏层,每个隐藏层有32个神经元,具有relu激活函数,输出层具有softmax激活函数。critic模型也是一个神经网络,它有2个隐含层,每层32个神经元,具有relu激活函数,输出层具有线性激活函数。

使用分类交叉熵损失函数训练actor模型,使用均方误差损失函数训练critic模型。动作是根据actor模型预测选择的,并添加了用于探索的噪声。

5、PPO

PPO(Proximal Policy Optimization)是一种策略算法,它使用信任域优化的方法来更新策略。 它在具有高维观察和连续动作空间的环境中特别有用。 PPO 以其稳定性和高样品效率而著称。

importnumpyasnp
 fromkeras.modelsimportModel, Sequential
 fromkeras.layersimportDense, Input
 fromkeras.optimizersimportAdam
 
 # Define the policy model
 state_input=Input(shape=(state_space_size,))
 policy=Dense(32, activation='relu')(state_input)
 policy=Dense(32, activation='relu')(policy)
 policy=Dense(action_space_size, activation='softmax')(policy)
 policy_model=Model(inputs=state_input, outputs=policy)
 
 # Define the value model
 value_model=Model(inputs=state_input, outputs=Dense(1, activation='linear')(policy))
 
 # Define the optimizer
 optimizer=Adam(lr=0.001)
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     whilenotdone:
         # Select an action using the policy model
         action_probs=policy_model.predict(np.array([current_state]))[0]
         action=np.random.choice(range(action_space_size), p=action_probs)
 
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
 
         # Calculate the advantage
         target_value=value_model.predict(np.array([next_state]))[0][0]
         advantage=reward+gamma*target_value-value_model.predict(np.array([current_state]))[0][0]
 
         # Calculate the old and new policy probabilities
         old_policy_prob=action_probs[action]
         new_policy_prob=policy_model.predict(np.array([next_state]))[0][action]
 
         # Calculate the ratio and the surrogate loss
         ratio=new_policy_prob/old_policy_prob
         surrogate_loss=np.minimum(ratio*advantage, np.clip(ratio, 1-epsilon, 1+epsilon) *advantage)
 
         # Update the policy and value models
         policy_model.trainable_weights=value_model.trainable_weights
         policy_model.compile(optimizer=optimizer, loss=-surrogate_loss)
         policy_model.train_on_batch(np.array([current_state]), np.array([action_one_hot]))
         value_model.train_on_batch(np.array([current_state]), reward+gamma*target_value)
 
         current_state=next_state

6、DQN

DQN(深度 Q 网络)是一种无模型、非策略算法,它使用神经网络来逼近 Q 函数。 DQN 特别适用于 Atari 游戏和其他类似问题,其中状态空间是高维的,并使用神经网络近似 Q 函数。

importnumpyasnp
 fromkeras.modelsimportSequential
 fromkeras.layersimportDense, Input
 fromkeras.optimizersimportAdam
 fromcollectionsimportdeque
 
 # Define the Q-network model
 model=Sequential()
 model.add(Dense(32, input_dim=state_space_size, activation='relu'))
 model.add(Dense(32, activation='relu'))
 model.add(Dense(action_space_size, activation='linear'))
 model.compile(loss='mse', optimizer=Adam(lr=0.001))
 
 # Define the replay buffer
 replay_buffer=deque(maxlen=replay_buffer_size)
 
 forepisodeinrange(num_episodes):
     current_state=initial_state
     whilenotdone:
         # Select an action using an epsilon-greedy policy
         ifnp.random.rand() <epsilon:
             action=np.random.randint(0, action_space_size)
         else:
             action=np.argmax(model.predict(np.array([current_state]))[0])
 
         # Take the action and observe the next state and reward
         next_state, reward, done=take_action(current_state, action)
 
         # Add the experience to the replay buffer
         replay_buffer.append((current_state, action, reward, next_state, done))
 
         # Sample a batch of experiences from the replay buffer
         batch=random.sample(replay_buffer, batch_size)
 
         # Prepare the inputs and targets for the Q-network
         inputs=np.array([x[0] forxinbatch])
         targets=model.predict(inputs)
         fori, (state, action, reward, next_state, done) inenumerate(batch):
             ifdone:
                 targets[i, action] =reward
             else:
                 targets[i, action] =reward+gamma*np.max(model.predict(np.array([next_state]))[0])
 
         # Update the Q-network
         model.train_on_batch(inputs, targets)
 
         current_state=next_state

上面的代码,Q-network有2个隐藏层,每个隐藏层有32个神经元,使用relu激活函数。该网络使用均方误差损失函数和Adam优化器进行训练。

7、TRPO

TRPO (Trust Region Policy Optimization)是一种无模型的策略算法,它使用信任域优化方法来更新策略。 它在具有高维观察和连续动作空间的环境中特别有用。

TRPO 是一个复杂的算法,需要多个步骤和组件来实现。TRPO不是用几行代码就能实现的简单算法。

所以我们这里使用实现了TRPO的现有库,例如OpenAI Baselines,它提供了包括TRPO在内的各种预先实现的强化学习算法,。

要在OpenAI Baselines中使用TRPO,我们需要安装:

pip install baselines

然后可以使用baselines库中的trpo_mpi模块在你的环境中训练TRPO代理,这里有一个简单的例子:

importgym
 frombaselines.common.vec_env.dummy_vec_envimportDummyVecEnv
 frombaselines.trpo_mpiimporttrpo_mpi
 
 #Initialize the environment
 env=gym.make("CartPole-v1")
 env=DummyVecEnv([lambda: env])
 
 # Define the policy network
 policy_fn=mlp_policy
 
 #Train the TRPO model
 model=trpo_mpi.learn(env, policy_fn, max_iters=1000)

我们使用Gym库初始化环境。然后定义策略网络,并调用TRPO模块中的learn()函数来训练模型。

还有许多其他库也提供了TRPO的实现,例如TensorFlow、PyTorch和RLLib。下面时一个使用TF 2.0实现的样例

importtensorflowastf
 importgym
 
 # Define the policy network
 classPolicyNetwork(tf.keras.Model):
     def__init__(self):
         super(PolicyNetwork, self).__init__()
         self.dense1=tf.keras.layers.Dense(16, activation='relu')
         self.dense2=tf.keras.layers.Dense(16, activation='relu')
         self.dense3=tf.keras.layers.Dense(1, activation='sigmoid')
 
     defcall(self, inputs):
         x=self.dense1(inputs)
         x=self.dense2(x)
         x=self.dense3(x)
         returnx
 
 # Initialize the environment
 env=gym.make("CartPole-v1")
 
 # Initialize the policy network
 policy_network=PolicyNetwork()
 
 # Define the optimizer
 optimizer=tf.optimizers.Adam()
 
 # Define the loss function
 loss_fn=tf.losses.BinaryCrossentropy()
 
 # Set the maximum number of iterations
 max_iters=1000
 
 # Start the training loop
 foriinrange(max_iters):
     # Sample an action from the policy network
     action=tf.squeeze(tf.random.categorical(policy_network(observation), 1))
 
     # Take a step in the environment
     observation, reward, done, _=env.step(action)
 
     withtf.GradientTape() astape:
         # Compute the loss
         loss=loss_fn(reward, policy_network(observation))
 
     # Compute the gradients
     grads=tape.gradient(loss, policy_network.trainable_variables)
 
     # Perform the update step
     optimizer.apply_gradients(zip(grads, policy_network.trainable_variables))
 
     ifdone:
         # Reset the environment
         observation=env.reset()

在这个例子中,我们首先使用TensorFlow的Keras API定义一个策略网络。然后使用Gym库和策略网络初始化环境。然后定义用于训练策略网络的优化器和损失函数。

在训练循环中,从策略网络中采样一个动作,在环境中前进一步,然后使用TensorFlow的GradientTape计算损失和梯度。然后我们使用优化器执行更新步骤。

这是一个简单的例子,只展示了如何在TensorFlow 2.0中实现TRPO。TRPO是一个非常复杂的算法,这个例子没有涵盖所有的细节,但它是试验TRPO的一个很好的起点。

总结

综上就是我们总结的7个常用的强化学习算法,这些算法并不相互排斥,通常与其他技术(如值函数逼近、基于模型的方法和集成方法)结合使用,可以获得更好的结果。

到此这篇关于7个流行的Python强化学习算法及代码实现详解的文章就介绍到这了,更多相关Python强化学习算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯