文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

模型的保存加载、模型微调、GPU使用及Pytorch常见报错

2023-08-30 10:39

关注

序列化与反序列化

序列化就是说内存中的某一个对象保存到硬盘当中,以二进制序列的形式存储下来,这就是一个序列化的过程。 而反序列化,就是将硬盘中存储的二进制的数,反序列化到内存当中,得到一个相应的对象,这样就可以再次使用这个模型了。

序列化和反序列化的目的就是将我们的模型长久的保存。

Pytorch中序列化和反序列化的方法:
torch.save(obj, f): obj表示对象, 也就是我们保存的数据,可以是模型,张量, dict等等, f表示输出的路径
torch.load(f, map_location): f表示文件的路径, map_location指定存放位置, CPU或者GPU, 这个参数挺重要,在使用GPU训练的时候再具体说。
第一种方法比较懒,保存整个的模型架构, 比较费时占内存, 第二种方法是只保留模型上的可学习参数, 等建立一个新的网络结构,然后放上这些参数即可,所以推荐使用第二种。 下面通过代码看看具体怎么使用:

只保留模型参数的话应该怎么再次使用
在这里插入图片描述

模型断点续训练

断点续训练技术就是当我们的模型训练的时间非常长,而训练到了中途出现了一些意外情况,比如断电了,当再次来电的时候,我们肯定是希望模型在中途的那个地方继续往下训练,这就需要我们在模型的训练过程中保存一些断点,这样发生意外之后,我们的模型可以从断点处继续训练而不是从头开始。 所以模型训练过程中设置checkpoint也是非常重要的。

那么就有一个问题了, 这个checkpoint里面需要保留哪些参数呢? 我们可以再次回忆模型训练的五个步骤: 数据 -> 模型 -> 损失函数 -> 优化器 -> 迭代训练。 在这五个步骤中,我们知道数据,损失函数这些是没法变得, 而在迭代训练过程中,我们模型里面的可学习参数, 优化器里的一些缓存是会变的, 所以我们需要保留这些东西。所以我们的checkpoint里面需要保存模型的数据,优化器的数据,还有迭代到了第几次。
在这里插入图片描述
下面通过人民币二分类的实验,模拟一个训练过程中的意外中断和恢复,看看怎么使用这个断点续训练:
在这里插入图片描述

发生了一个意外中断,但是我们设置了断点并且进行保存,那么我们下面就进行恢复, 从断点处进行训练,也就是上面的第6个epoch开始,我们看看怎么恢复断点训练:
在这里插入图片描述
所以在模型的训练过程当中, 以一定的间隔去保存我们的模型,保存断点,在断点里面不仅要保存模型的参数,还要保存优化器的参数。这样才可以在意外中断之后恢复训练。

GPU的使用

系统学习Pytorch笔记十: 模型的保存加载、模型微调、GPU使用及Pytorch常见报错

来源地址:https://blog.csdn.net/hahhahahhaja/article/details/132560677

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-人工智能
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯