目录
- 前言
- 一、展示脚本
- 二、使用准备
- 三、脚本使用方法
前言
在我们构建离线数仓时或者迁移数据时,通常选用sqoop和datax等工具进行操作,sqoop和datax各有优点,datax优点也很明显,基于内存,所以速度上很快,那么在进行全量同步时编写json文件是一项很繁琐的事,是否可以编写脚本来把繁琐事来简单化,接下来我将分享这样一个mysql全量同步到hive自动生成json文件的python脚本。
一、展示脚本
# coding=utf-8
import json
import getopt
import os
import sys
import pymysql
# MySQL 相关配置,需根据实际情况作出修改
mysql_host = "XXXXXX"
mysql_port = "XXXX"
mysql_user = "XXX"
mysql_passwd = "XXXXXX"
# HDFS NameNode 相关配置,需根据实际情况作出修改
hdfs_nn_host = "XXXXXX"
hdfs_nn_port = "XXXX"
# 生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/XXX/XXX/XXX"
def get_connection():
return pymysql.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, password=mysql_passwd)
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
def get_mysql_columns(database, table):
return list(map(lambda x: x[0], get_mysql_meta(database, table)))
def get_hive_columns(database, table):
def type_mapping(mysql_type):
mappings = {
"bigint": "bigint",
"int": "bigint",
"smallint": "bigint",
"tinyint": "bigint",
"decimal": "string",
"double": "double",
"float": "float",
"binary": "string",
"char": "string",
"varchar": "string",
"datetime": "string",
"time": "string",
"timestamp": "string",
"date": "string",
"text": "string"
}
return mappings[mysql_type]
meta = get_mysql_meta(database, table)
return list(map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta))
def generate_json(source_database, source_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(source_database, source_table),
"splitPk": "",
"connection": [{
"table": [source_table],
"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]
}]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"fileType": "text",
"path": "${targetdir}",
"fileName": source_table,
"column": get_hive_columns(source_database, source_table),
"writeMode": "append",
"fieldDelimiter": "\t",
"compress": "gzip"
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
source_database = ""
source_table = ""
options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--sourcedb'):
source_database = opt_value
if opt_name in ('-t', '--sourcetbl'):
source_table = opt_value
generate_json(source_database, source_table)
if __name__ == '__main__':
main(sys.argv[1:])
二、使用准备
1、安装python环境
这里我安装的是python3环境
sudo yum install -y python3
2、安装EPEL
EPEL(Extra Packages for Enterprise linux)是一个由 Fedora Special Interest Group 维护的软件仓库,提供了大量在官方 RHEL 或 Centos 软件仓库中没有的软件包。当你在 CentOS 或 RHEL 系统上需要安装一些不在官方软件仓库中的软件时,通常会先安装epel - release
sudo yum install -y epel-release
3、安装脚本执行需要的第三方模块
pip3 install pymysql
pip3 install cryptography
这里可能由于斑纹问题cryptography安装不上去更新一下pip和setuptools
pip3 install --upgrade pip
pip3 install --upgrade setuptools
重新安装cryptography
pip3 install cryptography
三、脚本使用方法
1、配置脚本
首先根据自己服务器修改脚本相关配置
2、创建.py文件
vim /xxx/xxx/xxx/gen_import_config.py
3、执行脚本
python3 /脚本路径/gen_import_config.py -d 数据库名 -t 表名
4、测试生成json文件是否可用
datax.py -p"-Dtargetdir=/表在hdfs存放路径" /生成的json文件路径
执行时首先要确保targetdir目标地址在hdfs上存在,如果没有需要创建后再次执行
到此这篇关于Python脚本实现datax全量同步mysql到hive的文章就介绍到这了,更多相关Python datax全量同步mysql到hive内容请搜索编程网(www.lsjlt.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程客栈(www.lsjlt.com)!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
软考中级精品资料免费领
- 历年真题答案解析
- 备考技巧名师总结
- 高频考点精准押题
- 资料下载
- 历年真题
193.9 KB下载数265
191.63 KB下载数245
143.91 KB下载数1148
183.71 KB下载数642
644.84 KB下载数2756
相关文章
发现更多好内容- 探讨Uncomtrade数据库的安全防护措施
- Java 如何获取某个接口的实现类?(Java怎么获取某个接口的实现类)
- Java中如何正确使用 collections.shuffle 方法?(Java中collections.shuffle怎么使用)
- Java Swing 中常用的布局有哪些?(java swing常用布局有哪些)
- 如何通过 Java Reflection 获取泛型信息?(java reflection如何获取泛型信息)
- 如何自定义 Java 泛型通配符?(java泛型通配符怎么自定义)
- Java Spring 注解与 XML 配置的差异究竟有哪些?(java spring注解与XML配置的区别是什么)
- Java 动态线程池对性能究竟有哪些影响呢?(Java动态线程池对性能的影响)
- 在 Java 中,Guava 究竟有哪些作用呢?(java中guava的作用是什么)
- 软考高项证书能个税抵扣吗?软考高项证书个税啥时候填报?