文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

GIL 的辐射:并发 Python 中的意外后果

2024-03-01 20:19

关注

Python 是一种强大且通用的编程语言,具有广泛的库和框架,使其成为数据科学、机器学习和其他计算密集型任务的热门选择。然而,Python 的并行处理能力受到全局解释器锁 (GIL) 的限制,这可能会在某些情况下导致意外后果。

GIL 的作用

GIL 是一种轻量级锁机制,它保证 Python 解释器在同一时间只能执行一个线程。这意味着多个线程不能同时执行 Python 字节码,从而避免了同时修改共享数据的竞争条件。对于解释器的稳定性和数据完整性而言,GIL 至关重要。

并发的意外后果

尽管 GIL 对于确保安全性很重要,但它也会对并发的性能产生负面影响。当多个线程在 GIL 上竞争时,它们可能会遇到阻塞和延迟。这对于同时执行大量并行任务的计算密集型任务来说尤其成问题。

示例代码

以下代码演示了在 Python 中使用 GIL 如何导致意外后果:

import threading

def increment_counter(counter):
    for _ in range(1000000):
        counter += 1

def main():
    counter = 0
    threads = []

    # 创建并启动 10 个线程
    for _ in range(10):
        threads.append(threading.Thread(target=increment_counter, args=(counter,)))
        threads[-1].start()

    # 等待所有线程完成
    for thread in threads:
        thread.join()

    print(counter)

if __name__ == "__main__":
    main()

在没有 GIL 的情况下,此代码将打印出 10000000(线程数与每个线程的循环次数之积)。但是,由于 GIL,线程只能同时执行一个,导致最终结果远低于预期值。

规避 GIL

对于需要高并发性的应用程序,可以通过以下方法规避 GIL:

结论

GIL 是 Python 中确保线程安全的重要机制。然而,它也会对并发性能产生意外后果。程序员应了解 GIL 的限制,并根据应用程序需求选择适当的并发策略。通过采用多进程、Cython 或协程,可以规避 GIL 的限制并充分利用 Python 的并行处理能力。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯