[LeetCode] 164. Maximum Gap 求最大间距
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Return 0 if the array contains less than 2 elements.
Example 1:
Input: [3,6,9,1]
Output: 3
Explanation: The sorted form of the array is [1,3,6,9], either
(3,6) or (6,9) has the maximum difference 3.
Example 2:
Input: [10]
Output: 0
Explanation: The array contains less than 2 elements, therefore return 0.
Note:
- You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
- Try to solve it in linear time/space.
遇到这类问题肯定先想到的是要给数组排序,但是题目要求是要线性的时间和空间,那么只能用桶排序或者基排序。这里用桶排序 Bucket Sort 来做,首先找出数组的最大值和最小值,然后要确定每个桶的容量,即为 (最大值 - 最小值) / 个数 + 1,在确定桶的个数,即为 (最大值 - 最小值) / 桶的容量 + 1,然后需要在每个桶中找出局部最大值和最小值,而最大间距的两个数不会在同一个桶中,而是一个桶的最小值和另一个桶的最大值之间的间距,这是因为所有的数字要尽量平均分配到每个桶中,而不是都拥挤在一个桶中,这样保证了最大值和最小值一定不会在同一个桶中,具体的证明博主也不会,只是觉得这样想挺有道理的,各位看官大神们若知道如何证明请务必留言告诉博主啊,参见代码如下:
class Solution {
public:
int maximumGap(vector<int>& nums) {
if (nums.size() <= 1) return 0;
int mx = INT_MIN, mn = INT_MAX, n = nums.size(), pre = 0, res = 0;
for (int num : nums) {
mx = max(mx, num);
mn = min(mn, num);
}
int size = (mx - mn) / n + 1, cnt = (mx - mn) / size + 1;
vector<int> bucket_min(cnt, INT_MAX), bucket_max(cnt, INT_MIN);
for (int num : nums) {
int idx = (num - mn) / size;
bucket_min[idx] = min(bucket_min[idx], num);
bucket_max[idx] = max(bucket_max[idx], num);
}
for (int i = 1; i < cnt; ++i) {
if (bucket_min[i] == INT_MAX || bucket_max[i] == INT_MIN) continue;
res = max(res, bucket_min[i] - bucket_max[pre]);
pre = i;
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/164
参考资料:
https://leetcode.com/problems/maximum-gap
http://blog.csdn.net/u011345136/article/details/41963051
https://leetcode.com/problems/maximum-gap/discuss/50642/radix-sort-solution-in-java-with-explanation
https://leetcode.com/problems/maximum-gap/discuss/50643/bucket-sort-java-solution-with-explanation-on-time-and-space
到此这篇关于C++实现LeetCode(164.求最大间距)的文章就介绍到这了,更多相关C++实现求最大间距内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!