这篇文章将为大家详细讲解有关Apache Commons Math3探索之多项式曲线拟合的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
具体如下。
多项式曲线拟合:org.apache.commons.math4.fitting.PolynomialCurveFitter类。
用法示例代码:
// ... 创建并初始化输入数据: double[] x = new double[...]; double[] y = new double[...]; 将原始的x-y数据序列合成带权重的观察点数据序列: WeightedObservedPoints points = new WeightedObservedPoints(); // 将x-y数据元素调用points.add(x[i], y[i])加入到观察点序列中 // ... PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); // degree 指定多项式阶数 double[] result = fitter.fit(points.toList()); // 曲线拟合,结果保存于双精度数组中,由常数项至最高次幂系数排列
首先要准备好待拟合的曲线数据x和y,这是两个double数组,然后把这两个数组合并到WeightedObservedPoints对象实例中,可以调用WeightedObservedPoints.add(x[i], y[i])将x和y序列中的数据逐个添加到观察点序列对象中。随后创建PolynomialCurveFitter对象,创建时要指定拟合多项式的阶数,注意阶数要选择适当,不是越高越好,否则拟合误差会很大。最后调用PolynomialCurveFitter的fit方法即可完成多项式曲线拟合,fit方法的参数通过WeightedObservedPoints.toList()获得。拟合结果通过一个double数组返回,按元素顺序依次是常数项、一次项、二次项、……。
完整的演示代码如下:
interface TestCase { public Object run(List<Object> params) throws Exception; public List<Object> getParams(); public void printResult(Object result); } class CalcCurveFitting implements TestCase { public CalcCurveFitting() { System.out.print("本算例用于计算多项式曲线拟合。正在初始化 计算数据(" + arrayLength + "点, " + degree + "阶)... ..."); inputDataX = new double[arrayLength]; // inputDataX = new double[] {1, 2, 3, 4, 5, 6, 7}; inputDataY = new double[inputDataX.length]; double[] factor = new double[degree + 1]; // N阶多项式会有N+1个系数,其中之一为常数项 for(int index = 0; index < factor.length; index ++) { factor[index] = index + 1; } for(int index = 0; index < inputDataY.length; index ++) { inputDataX[index] = index * 0.00001; inputDataY[index] = calcPoly(inputDataX[index], factor); // y = sum(x[n) * fact[n]) // System.out.print(inputDataY[index] + ", "); } points = new WeightedObservedPoints(); for(int index = 0; index < inputDataX.length; index ++) { points.add(inputDataX[index], inputDataY[index]); } System.out.println("初始化完成"); } @Override public List<Object> getParams() { List<Object> params = new ArrayList<Object>(); params.add(points); return params; } @Override public Object run(List<Object> params) throws Exception { PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); WeightedObservedPoints points = (WeightedObservedPoints)params.get(0); double[] result = fitter.fit(points.toList()); return result; } @Override public void printResult(Object result) { for(double data : (double[])result) { System.out.println(data); } } private double calcPoly(double x, double[] factor) { double y = 0; for(int deg = 0; deg < factor.length; deg ++) { y += Math.pow(x, deg) * factor[deg]; } return y; } private double[] inputDataX = null; private double[] inputDataY = null; private WeightedObservedPoints points = null; private final int arrayLength = 200000; private final int degree = 5; // 阶数 } public class TimeCostCalculator { public TimeCostCalculator() { } public double calcTimeCost(TestCase testCase) throws Exception { List<Object> params = testCase.getParams(); long startTime = System.nanoTime(); Object result = testCase.run(params); long stopTime = System.nanoTime(); testCase.printResult(result); System.out.println("start: " + startTime + " / stop: " + stopTime); double timeCost = (stopTime - startTime) * 1.0e-9; return timeCost; } public static void main(String[] args) throws Exception { TimeCostCalculator tcc = new TimeCostCalculator(); double timeCost; System.out.println("--------------------------------------------------------------------------"); timeCost = tcc.calcTimeCost(new CalcCurveFitting()); System.out.println("time cost is: " + timeCost + "s"); System.out.println("--------------------------------------------------------------------------"); } }
关于“Apache Commons Math3探索之多项式曲线拟合的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。