本篇文章为大家展示了怎么在pytorch中查看网络参数总量,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
netG = Generator()print('# generator parameters:', sum(param.numel() for param in netG.parameters()))netD = Discriminator()print('# discriminator parameters:', sum(param.numel() for param in netD.parameters()))
补充:PyTorch查看网络模型的参数量PARAMS和FLOPS等
在PyTorch中,可以使用torchstat这个库来查看网络模型的一些信息,包括总的参数量params、MAdd、显卡内存占用量和FLOPs等。
示例代码如下:
from torchstat import statfrom torchvision.models import resnet50, resnet101, resnet152, resnext101_32x8dmodel = resnet50()stat(model, (3, 224, 224))
打印信息如下:
pytorch的优点
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
上述内容就是怎么在pytorch中查看网络参数总量,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。