文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

数学建模系列-预测模型(四)马尔可夫预测

2023-09-07 11:28

关注

目录

1 Markov模型含义

2 模型分析

3 应用题型

 3.1 问题分析

3.2 模型建立

4 Markov模型优缺点


        马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测研究中重要的预测方法之一。

1. 状态

        指某一件事在某个时刻(或时期)出现的某种结果。

2.状态转移过程

        事件的发展,从一种状态转变为另一种状态,称为状态转移。

3.马尔可夫过程

        在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

4.状态转移概率

        用于描述,在事件的发展变化过程中,从某一种状态出发,在下一时刻转移到其它状态的可能性大小。

        为了求出每一个,一般采用频率近似概率的思想进行计算。

5.状态转移概率矩阵

        假定某一个事件的发展过程有n个可能的状态,即E1,E2,…,En。记为从状态Ei转变为状态Ej的状态转移概率

         则状态转移概率矩阵为:

 6 状态概率

        表示事件在初始(k=0) 状态为已知的条件下,经过k次状态转移后在第k个时刻(时期)处于状态E_j的概率。根据马尔可夫过程的无后效性及Bayes条件概率公式,有

        在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例进行介绍。 

 7 第k个时刻(时期)的状态概率预测

        如果某一事件在第0个时刻(或时期)的初始状态已知,即Π(0)已知,则利用递推公式就可以求得它经过k次状态转移后,在第k个时刻(时期)处于各种可能的状态的概率,即 Π(k),从而就得到该事件在第k个时刻(时期) 的状态概率预测。

        假定系统有m种状态S1,S2,…,Sm,根据系统的状态转移的历史记录,得到表3的统计表格,用P_ij表示系统从状态i转移到状态j的转移概率估计值,则由下表的数据计算估计值的公式如下:

         计算转移概率的公式为:

        在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况。顾客订货情况如下表:

 3.1 问题分析

        目前的市场占有情况为:在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布.

        此外,我们需要查清使用对象的流动情况。流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出。

3.2 模型建立

        假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A、B、C三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表格,我们可以得模型的转移概率矩阵:

         矩阵中的第一行(0.4,0.3,0.3)表示目前是A厂的顾客下季度有40%仍买A厂的药,转为买B厂和C厂的各有30%.同样,第二行、第三行分别表示目前是B厂和C厂的顾客下季度的流向.

        适用范围: 适用于随机现象的数学模型(即在已知现情况的条件下, 系统未来时刻的情况只与现在有关, 而与过去的历史无直接关系) 。

        优点: 研究一个商店, 在未来某一时刻的销售额, 当现在时刻的累计销售额已知。

        缺点: 不适宜用于系统中长期预测。

来源地址:https://blog.csdn.net/vcvvcvx/article/details/128972126

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯