这篇文章将为大家详细讲解有关怎么进行Spark example的运行过程分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>active </groupId>
<artifactId>spark-test</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
</project>
SparkTest.java
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
public class SparkTest {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Test").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> file = sc.parallelize(Arrays.asList("Hello test", "Hello test2", "dds"));
JavaRDD<String> words = file.flatMap(s -> Arrays.asList(s.split(" |\t|\n|\r")).iterator());
JavaPairRDD<String, Integer> counts = words.mapToPair(s -> new Tuple2<String, Integer>(s, 1));
counts = counts.reduceByKey((x, y) -> x + y);
System.out.println(counts.collect());
sc.close();
}
}
可以单独运行,也可以提交到spark集群: spark-submit.cmd --class SparkTest D:\workspace\spark-test\target\spark-test-0.0.1-SNAPSHOT.jar
关于怎么进行Spark example的运行过程分析就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。