文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch中tensor.detach()和tensor.data的区别有哪些

2023-07-05 23:22

关注

这篇文章主要介绍“PyTorch中tensor.detach()和tensor.data的区别有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中tensor.detach()和tensor.data的区别有哪些”文章能帮助大家解决问题。

PyTorch中 tensor.detach() 和 tensor.data 的区别

以 a.data, a.detach() 为例:
两种方法均会返回和a相同的tensor,且与原tensor a 共享数据,一方改变,则另一方也改变。

所起的作用均是将变量tensor从原有的计算图中分离出来,分离所得tensor的requires_grad = False。

不同点:

data是一个属性,.detach()是一个方法;data是不安全的,.detach()是安全的;

>>> a = torch.tensor([1,2,3.], requires_grad =True)>>> out = a.sigmoid()>>> c = out.data>>> c.zero_()tensor([ 0., 0., 0.])>>> out                   #  out的数值被c.zero_()修改tensor([ 0., 0., 0.])>>> out.sum().backward()  #  反向传播>>> a.grad                #  这个结果很严重的错误,因为out已经改变了tensor([ 0., 0., 0.])

为什么.data是不安全的?

这是因为,当我们修改分离后的tensor,从而导致原tensora发生改变。PyTorch的自动求导Autograd是无法捕捉到这种变化的,会依然按照求导规则进行求导,导致计算出错误的导数值。

其风险性在于,如果我在某一处修改了某一个变量,求导的时候也无法得知这一修改,可能会在不知情的情况下计算出错误的导数值。

>>> a = torch.tensor([1,2,3.], requires_grad =True)>>> out = a.sigmoid()>>> c = out.detach()>>> c.zero_()tensor([ 0., 0., 0.])>>> out                   #  out的值被c.zero_()修改 !!tensor([ 0., 0., 0.])>>> out.sum().backward()  #  需要原来out得值,但是已经被c.zero_()覆盖了,结果报错RuntimeError: one of the variables needed for gradientcomputation has been modified by an

那么.detach()为什么是安全的?

使用.detach()的好处在于,若是出现上述情况,Autograd可以检测出某一处变量已经发生了改变,进而以如下形式报错,从而避免了错误的求导。

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

从以上可以看出,是在前向传播的过程中使用就地操作(In-place operation)导致了这一问题,那么就地操作是什么呢?

补充:pytorch中的detach()函数的作用

detach()

官方文档中,对这个方法是这么介绍的。

import torchfrom torch.nn import initfrom torch.autograd import Variablet1 = torch.FloatTensor([1., 2.])v1 = Variable(t1)t2 = torch.FloatTensor([2., 3.])v2 = Variable(t2)v3 = v1 + v2v3_detached = v3.detach()v3_detached.data.add_(t1) # 修改了 v3_detached Variable中 tensor 的值print(v3, v3_detached)    # v3 中tensor 的值也会改变

能用来干啥

可以对部分网络求梯度。

如果我们有两个网络 , 两个关系是这样的 现在我们想用 来为B网络的参数来求梯度,但是又不想求A网络参数的梯度。我们可以这样:

# y=A(x), z=B(y) 求B中参数的梯度,不求A中参数的梯度y = A(x)z = B(y.detach())z.backward()

关于“PyTorch中tensor.detach()和tensor.data的区别有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯