文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

详解Python手写数字识别模型的构建与使用

2022-12-22 09:00

关注

一:手写数字模型构建与保存

1 加载数据集

# 1加载数据
digits_data = load_digits()

可以先简单查看下 手写数字集,如下可以隐约看出数字为8

plt.imshow(digits_data.images[8])
plt.show()

2 特征数据 标签数据

# 数据划分
x_data = digits_data.data
y_data = digits_data.target

3 训练集 测试集

# 训练集 + 测试集
x_test = x_data[:40]
y_test = y_data[:40]
 
x_train = x_data[40:]
y_train = y_data[40:]
# 概率问题
y_train_2 = np.zeros(shape=(len(y_train), 10))

4 数据流图 输入层

input_size = digits_data.data.shape[1]  # 输入的列数
# 数据流图的构建
# x:输入64个特征值--像素
x = tf.placeholder(np.float32, shape=[None, input_size])
# y:识别的数字 有几个类别[0-9]
y = tf.placeholder(np.float32, shape=[None, 10])

5 隐藏层

5.1 第一层

# 第一层隐藏层
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w1 = tf.Variable(tf.random_normal([input_size, 80], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b1 = tf.Variable(tf.constant(0.01), [80])
# 第一层计算
one = tf.matmul(x, w1) + b1
# 激活函数  和0比 大于0则激活
op1 = tf.nn.relu(one)

5.2 第二层

# 第二层隐藏层  上一层输出为下一层输入
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w2 = tf.Variable(tf.random_normal([80, 10], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b2 = tf.Variable(tf.constant(0.01), [10])
# 第一层计算
two = tf.matmul(op1, w2) + b2
# 激活函数  和0比 大于0则激活
op2 = tf.nn.relu(two)

6 损失函数

# 构建损失函数 
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=op2))

7 梯度下降算法

# 梯度下降算法
Optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.005).minimize(loss)

8 输出损失值 

# 变量初始化
init = tf.global_variables_initializer()
data_size = digits_data.data.shape[0]
 
# 开启会话
with tf.Session() as sess:
    sess.run(init)
    # 训练次数
    for i in range(500):
        # 数据分组
        start = (i * 100) % data_size
        end = min(start + 100, data_size)
        batch_x = x_train[start:end]
        batch_y = y_train_2[start:end]
        sess.run(Optimizer, feed_dict={x: batch_x, y: batch_y})
        # 输出损失值
        train_loss = sess.run(loss, feed_dict={x: batch_x, y: batch_y})
        print(train_loss)

9 模型 保存与使用

    obj = tf.train.Saver()
    # 模型保存
    obj.save(sess, 'model-digits.ckpt')

10 完整源码分享

import tensorflow as tf
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 1加载数据
digits_data = load_digits()
# 查看数据
# print(digits_data)
# 查看数据基本特征 (1797, 64) 64:8*8像素点
# print(digits_data.data.shape)
 
# plt.imshow(digits_data.images[8])
# plt.show()
 
# 数据划分
x_data = digits_data.data
y_data = digits_data.target
 
# 训练集 + 测试集
x_test = x_data[:40]
y_test = y_data[:40]
 
x_train = x_data[40:]
y_train = y_data[40:]
# 概率问题
y_train_2 = np.zeros(shape=(len(y_train), 10))
 
# 对应的分类 当前行对应列变成1
for index, row in enumerate(y_train_2):
    # 当前行 对应的数字对应列
    row[int(y_train[index])] = 1
# print(y_train_2[0])
 
input_size = digits_data.data.shape[1]  # 输入的列数
# 数据流图的构建
# x:输入64个特征值--像素
x = tf.placeholder(np.float32, shape=[None, input_size])
# y:识别的数字 有几个类别[0-9]
y = tf.placeholder(np.float32, shape=[None, 10])
 
# 第一层隐藏层
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w1 = tf.Variable(tf.random_normal([input_size, 80], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b1 = tf.Variable(tf.constant(0.01), [80])
# 第一层计算
one = tf.matmul(x, w1) + b1
# 激活函数  和0比 大于0则激活
op1 = tf.nn.relu(one)
 
# 第二层隐藏层  上一层输出为下一层输入
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w2 = tf.Variable(tf.random_normal([80, 10], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b2 = tf.Variable(tf.constant(0.01), [10])
# 第一层计算
two = tf.matmul(op1, w2) + b2
# 激活函数  和0比 大于0则激活
op2 = tf.nn.relu(two)
 
# 构建损失函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=op2))
# 梯度下降算法 优化器          learning_rate学习率(步长)
Optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.005).minimize(loss)
 
# 变量初始化
init = tf.global_variables_initializer()
data_size = digits_data.data.shape[0]
 
# 开启会话
with tf.Session() as sess:
    sess.run(init)
    # 训练次数
    for i in range(500):
        # 数据分组
        start = (i * 100) % data_size
        end = min(start + 100, data_size)
        batch_x = x_train[start:end]
        batch_y = y_train_2[start:end]
        sess.run(Optimizer, feed_dict={x: batch_x, y: batch_y})
        # 输出损失值
        train_loss = sess.run(loss, feed_dict={x: batch_x, y: batch_y})
        print(train_loss)
    obj = tf.train.Saver()
    # 模型保存
    obj.save(sess, 'modelSave/model-digits.ckpt')

 损失值在0.303左右,如下图所示

二:手写数字模型使用与测试

对上一步创建的模型,使用测试

import tensorflow as tf
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
 
# 1加载数据
digits_data = load_digits()
 
# 数据划分
x_data = digits_data.data
y_data = digits_data.target
 
# 训练集 + 测试集
x_test = x_data[:40]
y_test = y_data[:40]
 
x_train = x_data[40:]
y_train = y_data[40:]
# 概率问题
y_train_2 = np.zeros(shape=(len(y_train), 10))
 
# 对应的分类 当前行对应列变成1
for index, row in enumerate(y_train_2):
    # 当前行 对应的数字对应列
    row[int(y_train[index])] = 1
 
# 网络搭建
num_class = 10  # 数字0-9
hidden_num = 80  # 神经元个数
input_size = digits_data.data.shape[1]  # 输入的列数
# 数据流图的构建
# x:输入64个特征值--像素
x = tf.placeholder(np.float32, shape=[None, 64])
# y:识别的数字 有几个类别[0-9]
y = tf.placeholder(np.float32, shape=[None, 10])
 
# 第一层隐藏层
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w1 = tf.Variable(tf.random_normal([input_size, 80], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b1 = tf.Variable(tf.constant(0.01), [80])
# 第一层计算
one = tf.matmul(x, w1) + b1
# 激活函数  和0比 大于0则激活
op1 = tf.nn.relu(one)
 
# 第二层隐藏层  上一层输出为下一层输入
# 参数1 输入维度  参数2:输出维度(神经元个数) 标准差是0.1的正态分布
w2 = tf.Variable(tf.random_normal([80, 10], stddev=0.1))
# b的个数就是隐藏层神经元的个数
b2 = tf.Variable(tf.constant(0.01), [10])
# 第一层计算
two = tf.matmul(op1, w2) + b2
# 激活函数  和0比 大于0则激活
op2 = tf.nn.relu(two)
 
# 变量初始化
init = tf.global_variables_initializer()
 
train_count = 500
batch_size = 100
data_size = x_train.shape[0]
 
pre_max_index = tf.argmax(op2, 1)
plt.imshow(digits_data.images[13])  # 3
plt.show()
 
with tf.Session() as sess:
    sess.run(init)
    # 使用网络
    obj = tf.train.Saver()
    obj.restore(sess, 'modelSave/model-digits.ckpt')
    print(sess.run(op2, feed_dict={x: [x_test[13], x_test[14]]}))
    print(sess.run(pre_max_index, feed_dict={x: [x_test[13], x_test[14]]}))

想要测试的数据,如下图所示

使用模型测试出来的结果,如下图所示,模型基本能够使用

到此这篇关于详解Python手写数字识别模型的构建与使用的文章就介绍到这了,更多相关Python手写数字识别模型内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯