文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

快速学习MySQL基础知识

2022-05-26 16:40

关注

这篇文章主要梳理了 SQL 的基础用法,会涉及到以下方面内容:

了解 SQL

SQL 是我们用来最长和数据打交道的方式之一,如果按照功能划分可分为如下 4 个部分:

平时在编写 SQL 时,可能发现许多 SQL 大小写不统一,虽然不会影响 SQL 的执行结果,但保持统一的书写规范,是提高效率的关键,通常遵循如下的原则:

目前排名较前的 DBMS:

认识 SELECT

SELECT 一般是在学习 SQL 接触的第一个关键字,基础的内容就是不提了,这里整理常用的规范:

起别名


SELECT name AS n FROM student

查询常数, 增加一列固定的常数列:


SELECT '学生信息' as student_info, name FROM student

去重重复行


SELECT DISTINCT age FROM student

需要注意的是 DISTINCT 是对后面的所有列进行去重, 下面这种情况就会对 age 和 name 的组合进行去重。


SELECT DISTINCT age,name FROM student

排序数据,ASC 代表升序,DESC 代表降序

如先按照 name 排序,name 相等的情况下按照 age 排序。


SELECT DISTINCT age FROM student ORDERY BY name,age DESC

限制返回的数量


SELECT DISTINCT age FROM student ORDERY BY name DESC LIMIT 5

SELECT 的执行顺序

了解了 SELECT 的执行顺序,才能更好地写出更有效率的 SQL。

对于 SELECT 顺序有两个原则:


SELECT DISTINCT student_id, name, count(*) as num #顺序5
FROM student JOIN class ON student.class_id = class.class_id #顺序1
WHERE age > 18 #顺序2
GROUP BY student.class_id #顺序3
HAVING num > 2 #顺序4
ORDER BY num DESC #顺序6
LIMIT 2 #顺序7

在逐一分析下这个过程前,我们需要知道在上面的每一个步骤中都会产生一个虚拟表,然后将这个虚拟表作为下一个步骤中作为输入,但这一过程对我们来说是不可见的:

  1. 从 FROM 语句开始,对 student 和 class 表进行 CROSS JOIN 笛卡尔积运算,得到虚拟表 vt 1-1;
  2. 通过 ON 筛选,在 vt1-1 的基础上进行过滤然后得到表 vt 1-2;
  3. 添加外部行。如使用左连接,右连接和全连接时,就会涉及到外部行,会在 vt1-2 的基础上增加外部行,得到 vt1-3。
  4. 如果超过两张表,就会重复上面的步骤。
  5. 在拿到最终的 vt1 的表数据后,会执行 WHERE 后面的过滤阶段,得到表 vt2.
  6. 接着到 GROUP 阶段,进行分组得到 vt3.
  7. 接着到 HAVING 阶段,对分组的数据进行过滤,得到 vt4.
  8. 后面进入 SELECT 阶段,提取需要的字段,得到 vt5-1,接着通过 DISTINCT 阶段,过滤到重复的行,得到 vt5-2.
  9. 然后对指定的字段进行排序,进入 ORDER BY 阶段,得到 vt6.
  10. 最后在 LIMIT 阶段,取出指定的行,对应 vt7,也就是最后的结果。

如果涉及到函数的计算比如 sum() 等,会在 GROUP BY分组后,HAVING 分组前,进行聚集函数的计算。

涉及到表达式计算,如 age * 10 等,会在 HAVING 阶段后,SELECT 阶段前进行计算。

使用 SELECT 时指定明确的列来代替 SELECT * . 从而减少网络的传输量。

使用 WHERE 进行过滤

使用 WHERE 筛选时,常有通过比较运算符,逻辑运算符,通配符三种方式。

对于比较运算符,常用的运算符如下表。

对于逻辑运算符来说,可以将多个比较运行符连接起来,进行多条件的筛选,常用的运算符如下:

需要注意的是,当 AND 和 OR 同时出现时,AND 的优先级更高会先被执行。当如果存在 () 的话,则括号的优先级最高。

使用通配符过滤:

like:(%)代表零个或多个字符,(_)只代表一个字符

函数

和编程语言中的定义的函数一样,SQL 同样定义了一些函数方便使用,比如求和,平均值,长度等。

常见的函数主要分为如下四类,分类的原则是根据定义列时的数据类型:

需要注意的是,在使用字符串比较日期时,要使用 DATE 函数比较。

CAST 函数在转换数据类型时,不会四舍五入,如果原数值是小数,在转换到整数时会报错。

在转换时可以使用 DECIMAL(a,b) 函数来规定小数的精度,比如 DECIMAL(8,2) 表示精度为 8 位 - 小数加整数最多 8 位。小数后面最多为 2 位。

然后通过 SELECT CAST(123.123 AS DECIMAL(8,2)) 来转换。

聚集函数

通常情况下,我们会使用聚集函数来汇总表的数据,输入为一组数据,输出为单个值。

常用的聚集函数有 5 个:

其中 COUNT 函数需要额外注意,具体的内容可以参考这篇。

如何进行分组

在统计结果时,往往需要对数据按照一定条件进行分组,对应就是 GROUP BY 语句。

比如统计每个班级的学生人数:


SELECT class_id, COUNT(*) as student_count FROM student \
GROUP BY class_id; 

GROUP BY 后也可接多个列名,进行分组,比如按照班级和性别分组:


SELECT class_id, sex, COUNT(*) as student_count FROM \
student GROUP BY class_id, sex; 

HAVING 过滤和 WHERE 的区别

和 WHERE 一样,可以对分组后的数据进行筛选。区别在于 WHERE 适用于数据行,HAVING 用于分组。

而且 WHERE 支持的操作,HAVING 也同样支持。

比如可以筛选大于2人的班级:


SELECT class_id, COUNT(*) as student_count FROM student \ 
GROUP BY class_id \ 
HAVING student_count > 20; 

子查询

在一些更为复杂的情况中,往往会进行嵌套的查询,比如在获取结果后,该结果作为输入,去获取另外一组结果。

在 SQL 中,查询可以分为关联子查询和非关联子查询。

假设有如下的表结构:


-- ----------------------------
DROP TABLE IF EXISTS `student`;
CREATE TABLE `student` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL DEFAULT '',
 `age` int(3) NOT NULL,
 `sex` varchar(10) NOT NULL DEFAULT '',
 `class_id` int(11) NOT NULL COMMENT '班级ID',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8;

-- ----------------------------
-- Records of Student
-- ----------------------------
INSERT INTO `student` VALUES ('1', '胡一', 13, '男', '1');
INSERT INTO `student` VALUES ('3', '王阿', 11, '女', '1');
INSERT INTO `student` VALUES ('5', '王琦', 12, '男', '1');
INSERT INTO `student` VALUES ('7', '刘伟', 11, '女', '1');
INSERT INTO `student` VALUES ('7', '王意识', 11, '女', '2');

-- ----------------------------
DROP TABLE IF EXISTS `student_activities`;
CREATE TABLE `student_activities` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL DEFAULT '',
 `stu_id` int(11) NOT NULL COMMENT '班级ID',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8;
INSERT INTO `student_activities` VALUES ('1', '博物馆', 1);
INSERT INTO `student_activities` VALUES ('3, '春游', 3);

非关联子查询

子查询从数据表中查询了数据结果,如果这个数据结果只执行一次,然后这个数据结果作为主查询的条件接着执行。

这里想要查询和胡一相同班级的同学名称:


SELECT name FROM student WHERE class_id = \
(SELECT class_id FROM student WHERE name='胡一')

这里先查到胡一的班级,只有一次查询,再根据该班级查找学生就是非关联子查询。

关联子查询

如果子查询需要执行多次,即采用循环的方式,先从外部查询开始,每次都传入子查询进行查询,然后再将结果反馈给外部

再举个例子, 比如查询比每个班级中比平均年龄大的学生姓名信息:


SELECT name FROM student as s1 WHERE age > 
	(SELECT AVG(age) FROM student as s2 where s1.class_id = s2.class_id) 

这里根据每名同学的班级信息,查找出对应班级的平均年龄,然后做判断。子查询每次执行时,都需要根据外部的查询然后进行计算。这样的子查询就是关联子查询。

EXISTS 子查询

在关联子查询中,常会和 EXISTS 一起使用。用来判断条件是否满足,满足的话为 True,不满足为 False。

比如查询参加过学校活动的学生名称:


SELECT NAME FROM student as s where \
	EXISTS(SELECT stu_id FROM student_activities as sa where sa.stu_id=s.id)

同样 NOT EXISTS 就是不存在的意思,满足为 FALSE , 不满足为 True.

比如查询没有参加过学校活动的学生名称:


SELECT NAME FROM student as s where \
	NOT EXISTS(SELECT stu_id FROM student_activities as sa where sa.stu_id=s.id)

集合比较子查询

可以在子查询中,使用集合操作符,来比较结果。

还是上面查询参加学校活动的学生名字的子查询, 同样可以使用 IN:


SELECT name FROM student WHERE id IN (SELECT stu_id FROM student_activities)

EXISTS 和 IN 的区别

既然 EXISTS 和 IN 都能实现相同的功能,那么他们之间的区别是什么?

现在假设我们有表 A 和 表 B,其中 A,B 都有字段 cc,并对 cc 建立了 b+ 索引,其中 A 表 n 条记录,B 表 m 条索引。

将其模式抽象为:


SELECT * FROM A WHERE cc IN (SELECT cc FROM B)

SELECT * FROM A WHERE EXIST (SELECT cc FROM B WHERE B.cc=A.cc)

对于 EXISTS 来说,会先对外表进行逐条循环,每次拿到外表的结果后,带入子查询的内表中,去判断该值是否存在。

伪代码类似于下面:

for i in A
    for j in B
        if j.cc == i.cc:
         return result

首先先看外表 A,每一条都需要遍历到,所以需要 n 次。内表 B,在查询时由于使用索引进而查询效率变成 log(m) B+ 的树高,而不是 m。

进而总效率:n * log(m)

所以对于 A 表的数量明显小于 B 时,推荐使用 EXISTS 查询。

再看 IN ,会先对内表 B 进行查询,然后用外表 A 进行判断,伪代码如下:

for i in B
    for j in A
        if j.cc == i.cc:
         return result

由于需要首先将内表所有数据查出,所以需要的次数就是 m. 再看外表 A ,由于使用了 cc 索引,可将 n 简化至 log(n), 也就是 m * log(n).

所以对于 A 表的数据明显大于 B 表时,推荐使用 IN 查询。

总结一下对于 IN 和 EXISTS时,采用小表驱动大表的原则。

这里再扩展下 NOT EXISTS 和 NOT IN 的区别:


SELECT * FROM A WHERE cc NOT IN (SELECT cc FROM B) 

SELECT * FROM A WHERE NOT EXIST (SELECT cc FROM B WHERE B.cc=A.cc)

对于 NOT EXITS 来说,和 EXISTS 一样,对于内表可以使用 cc 的索引。适用于 A 表小于 B 表的情况。

但对于 NOT IN 来说,和 IN 就有区别了,由于 cc 设置了索引 cc IN (1, 2, 3) 可以转换成 WHERE cc=1 OR cc=2 OR cc=3 , 是可以正常走 cc 索引的。但对于 NOT IN 也就是转化为 cc!=1 OR cc!=2 OR cc!=3 这时由于是不等号查询,是无法走索引的,进而全表扫描。

也就是说,在设置索引的情况下 NOT EXISTS 比 NOT IN 的效率高。

但对于没有索引的情况,IN 和 OR 是不同的:

一、操作不同
1、in:in是把父查询表和子查询表作hash连接。
2、or:or是对父查询表作loop循环,每次loop循环再对子查询表进行查询。

二、适用场景不同
1、in:in适合用于子查询表数据比父查询表数据多的情况。
2、or:or适合用于子查询表数据比父查询表数据少的情况。

三、效率不同
1、in:在没有索引的情况下,随着in后面的数据量越多,in的执行效率不会有太大的下降。
2、or:在没有索引的情况下,随着or后面的数据量越多,or的执行效率会有明显的下降。

总结

这篇文章中主要归纳了一些 SQL 的基础知识:

在使用 SELECT 查询时,通过显式指定列名,来减少 IO 的传输,从而提高效率。

并且需要注意 SELECT 的查询过程会从 FROM 后开始到 LIMIT 结束,理解了整体的流程,可以让我们更好的组织 SQL.

之后详细介绍了 WHERE 进行过滤的操作符和常用的函数,这里要注意在比较时间时要使用 DATE 函数,以及如何对数据进行分组和过滤。

最后着重介绍了子查询,IN 和 EXISTS 的适用场景。

以上就是快速学习MySQL基础知识的详细内容,更多关于MySQL基础知识的资料请关注自学编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯