文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pandas中Series的属性,方法,常用操作使用案例

2024-04-02 19:55

关注

包的引入:

import numpy as np
import pandas as pd

1. Series 对象的创建

1.1 创建一个空的 Series 对象

s = pd.Series()
print(s)
print(type(s))

1.2 通过列表创建一个 Series 对象

需要传入一个列表序列

l = [1, 2, 3, 4]
s = pd.Series(l)
print(s)
print('-'*20)
print(type(s))

1.3 通过元组创建一个 Series 对象

需要传入一个元组序列

t = (1, 2, 3)
s = pd.Series(t)
print(s)
print('-'*20)
print(type(s))

1.4 通过字典创建一个 Series 对象

需要传入一个字典

m = {'zs': 12, 'ls': 23, 'ww': 22}
s = pd.Series(m)
print(s)
print('-'*20)
print(type(s))

1.5 通过 ndarray 创建一个 Series 对象

需要传入一个 ndarray

ndarr = np.array([1, 2, 3])
s = pd.Series(ndarr)
print(s)
print('-'*20)
print(type(s))

1.6 创建 Series 对象时指定索引

index:用于设置 Series 对象的索引

age = [12, 23, 22, 34]
name = ['zs', 'ls', 'ww', 'zl']
s = pd.Series(age, index=name)
print(s)
print('-'*20)
print(type(s))

1.7 通过一个标量(数)创建一个 Series 对象

num = 999
s = pd.Series(num, index=[1, 2, 3, 4])
print(s)
print('-'*20)
print(type(s))

ndarr = np.arange(0, 10, 2)
s = pd.Series(5, index=ndarr)
print(s)
print('-'*20)
print(type(s))

2. Series 的属性

2.1 values ---- 返回一个 ndarray 数组

l = [11, 22, 33, 44]
s = pd.Series(l)
print(s)
print('-'*20)
ndarr = s.values
print(ndarr)
print('-'*20)
print(type(ndarr))

2.2 index ---- 返回 Series 的索引序列

d = {'zs': 12, 'ls': 23, 'ww': 35}
s = pd.Series(d)
print(s)
print('-'*20)
idx = s.index
print(idx)
print('-'*20)
print(type(idx))

2.3 dtype ---- 返回 Series 中元素的数据类型

d = {'zs': 12, 'ls': 23, 'ww': 35}
s = pd.Series(d)
print(s)
print('-'*20)
print(s.dtype)

2. 4 size ---- 返回 Series 中元素的个数

d = {'zs': 12, 'ls': 23, 'ww': 35}
s = pd.Series(d)
print(s)
print('-'*20)
print(s.size)

2.5 ndim ---- 返回 Series 的维数

d = {'zs': 12, 'ls': 23, 'ww': 35}
s1 = pd.Series(d)
print(s1)
print('-'*20)
print(s1.ndim)
l = [[1, 1], [2, 2], [3, 3]]
s2 = pd.Series(l)
print(s2)
print('-'*20)
print(s2.ndim)

2.6 shape ---- 返回 Series 的维度

d = {'zs': 12, 'ls': 23, 'ww': 35}
s1 = pd.Series(d)
print(s1)
print('-'*20)
print(s1.shape)
print()

l = [[1, 1], [2, 2], [3, 3]]
s2 = pd.Series(l)
print(s2)
print('-'*20)
print(s2.shape)

3. Series 的方法

3.1 mean() ---- 求算术平均数

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s.mean())

3.2 min() max() ---- 求最值

l1 = [12, 23, 24, 34]
s1 = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s1)
print()
print(s1.max())
print(s1.min())
print()
l2 = ['ac', 'ca', 'cd', 'ab']
s2 = pd.Series(l2)
print(s2)
print()
print(s2.max())
print(s2.min())

3.3 argmax() argmin() idxmax() idxmin() ---- 获取最值索引

l1 = [12, 23, 24, 34]
s1 = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s1)
print()
# argmax() -- 最大值的数字索引
# idxmax() -- 最大值的标签索引
# 两个都不支持字符串类型的数据
print(s1.max(), s1.argmax(), s1.idxmax())
print(s1.min(), s1.argmin(), s1.idxmin())

3.4 median() ---- 求中位数

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s.median())

3.5 value_counts() ---- 求频数

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s.value_counts())

3.6 mode() ---- 求众数

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s.mode())
print()
l = [12, 23, 24, 34, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl', 'zq'])
print(s)
print()
print(s.mode())

3.7 quantile() ---- 求四分位数

四分位数:把数值从小到大排列并分成四等分,处于三个分割点位置的数值就是四分位数。

需要传入一个列表,列表中的元素为要获取的数的对应位置

l = [1, 1, 2, 2, 3, 3, 4, 4]
s = pd.Series(l)
print(s)
print()
print(s.quantile([0, .25, .50, .75, 1]))

3.8 std() ---- 标准差

总体标准差是反映研究总体内个体之间差异程度的一种统计指标。
总体标准差计算公式:

由于总体标准差计算出来会偏小,所以采用 ( n − d d o f ) (n-ddof) (n−ddof)的方式适当扩大标准差,即样本标准差。
样本标准差计算公式:

l = [1, 1, 2, 2, 3, 3, 4, 4]
s = pd.Series(l)
print(s)
print()
# 总体标准差
print(s.std())
print()
print(s.std(ddof=1))
print()
# 样本标准差
print(s.std(ddof=2))

3.9 describe() ---- 统计 Series 的常见统计学指标结果

l = [1, 1, 2, 2, 3, 3, 4, 4]
s = pd.Series(l)
print(s)
print()
print(s.describe())

3.10 sort_values() ---- 根据元素值进行排序

ascending:True为升序(默认),False为降序 3.10.1 升序

l = [4, 2, 1, 3]
s = pd.Series(l)
print(s)
print()
s = s.sort_values()
print(s)

3.10.2 降序

l = [4, 2, 1, 3]
s = pd.Series(l)
print(s)
print()
s = s.sort_values(ascending=False)
print(s)

3.11 sort_index() ---- 根据索引值进行排序

ascending:True为升序(默认),False为降序

3.11.2 升序

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s = s.sort_index()
print(s)

3.11.2 降序

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s = s.sort_index()
print(s)

3.12 apply() ---- 根据传入的函数参数处理 Series 对象

需要传入一个函数参数

# x 为当前遍历到的元素
def func(x):
  if (x%2==0): return x+1
  else: return x

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 调用 apply 方法,会将 Series 中的每个元素带入 func 函数中进行处理
s = s.apply(func)
print(s)

3.13 head() ---- 查看 Series

对象的前 x 个元素 需要传入一个数 x ,表示查看前 x 个元素,默认为前5个

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# head(x) 查看 Series 对象的前 x 个元素
print(s.head(2))

3.14 tail() ---- 查看 Series 对象的后 x 个元素

需要传入一个数 x ,表示查看后 x 个元素,默认为后5个

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# tail(x) 查看 Series 对象的后 x 个元素
print(s.tail(2))

4. Series 的常用操作

4.1 Series 对象的数据访问

4.1.1 使用数字索引进行访问

4.1.1.1 未自定义索引
l = [12, 23, 24, 34]
s = pd.Series(l)
print(s)
print()
print(s[0])
print()
print(s[1:-2])
print()
print(s[::2])
print()
print(s[::-1])

4.1.1.2 自定义索引
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s[0])
print()
print(s[1:-2])
print()
print(s[::2])
print()
print(s[::-1])

4.1.2 使用自定义标签索引进行访问

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s['zs'])
print()
# 自定义标签索引进行切片包含开始与结束位置
print(s['ls':'zl'])
print()
print(s['zs':'zl':2])
print()
# 注意切边范围的方向与步长的方向
print(s['zl':'zs':-1])

4.1.3 使用索引掩码进行访问

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
idx = (s%2==0)
print(idx)
print()
# 索引掩码(也是一个数组)
# 索引掩码个数与原数组的个数一致,数组每个元素都与索引掩码中的元素一一对应
# 数组每个元素都对应着索引掩码中的一个True或False
# 只有索引掩码中为True所对应元素组中的元素才会被选中
print(s[idx])

4.1.4 一次性访问多个元素

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 选出指定索引对应的元素
print(s[['zs', 'ww']])
print()
print(s[[1, 2]])

4.2 Series 对象数据元素的删除

4.2.1 pop()

传入要删除元素的标签索引

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s.pop('ww')
print(s)

4.2.2 drop()

传入要删除元素的标签索引

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# drop() 会返回一个删除元素后的新数组,不会对原数组进行修改
s = s.drop('zs')
print(s)

4.3 Series 对象数据元素的修改

4.3.1 通过标签索引进行修改

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s['zs'] = 22
print(s)

4.3.2 通过数字索引进行修改

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s[1] = 22
print(s)

4.4 Series 对象数据元素的添加

4.4.1 通过标签索引添加

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s['ll'] = 22
print(s)

4.4.2 append()

需要传入一个要添加到原 Series 对象的 Series 对象

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 可以添加已经存在的索引及其值
s2 = pd.Series([11, 13], index=['zs', 'wd'])
# append() 不会对原数组进行修改
s = s.append(s2)
print(s)
print()
print(s['zs'])

到此这篇关于Pandas中Series的属性,方法,常用操作使用案例的文章就介绍到这了,更多相关Pandas中Series属性内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯