文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

R语言对CSV文件操作实例讲解

2024-04-02 19:55

关注

在 R 语言中,我们可以从存储在 R 语言环境外的文件中读取数据。 我们还可以将数据写入将被操作系统存储和访问的文件。 R 语言可以读取和写入各种文件格式,如​csv​,​excel​,​xml​等。

在本章中,我们将学习从​csv​文件读取数据,然后将数据写入​csv​文件。 该文件应该存在于当前工作目录中,以便 R 语言可以读取它。 当然我们也可以设置我们自己的目录并从那里读取文件。

获取和设置工作目录

您可以使用getwd()函数检查R语言工作区指向的目录。 您还可以使用setwd()函数设置新的工作目录。


# Get and print current working directory.
print(getwd())

# Set current working directory.
setwd("/web/com")

# Get and print current working directory.
print(getwd())

当我们执行上面的代码,它产生以下结果


[1] "/web/com/1441086124_2016"
[1] "/web/com"

此结果取决于您的操作系统和您当前工作的目录。

输入为CSV文件

csv 文件是一个文本文件,其中列中的值由逗号分隔。 让我们考虑名为​input.csv​的文件中出现的以下数据。

您可以通过复制和粘贴此数据使用 Windows 记事本创建此文件。 使用记事本中的保存为所有文件​(*.*)​选项将文件保存为​input.csv​。


id,name,salary,start_date,dept
1,Rick,623.3,2012-01-01,IT
2,Dan,515.2,2013-09-23,Operations
3,Michelle,611,2014-11-15,IT
4,Ryan,729,2014-05-11,HR
 ,Gary,843.25,2015-03-27,Finance
6,Nina,578,2013-05-21,IT
7,Simon,632.8,2013-07-30,Operations
8,Guru,722.5,2014-06-17,Finance

读取CSV文件

以下是read.csv()函数的一个简单示例,用于读取当前工作目录中可用的 CSV 文件


data <- read.csv("input.csv")
print(data)

当我们执行上面的代码,它产生以下结果


      id,   name,    salary,   start_date,     dept
1      1    Rick     623.30    2012-01-01      IT
2      2    Dan      515.20    2013-09-23      Operations
3      3    Michelle 611.00    2014-11-15      IT
4      4    Ryan     729.00    2014-05-11      HR
5     NA    Gary     843.25    2015-03-27      Finance
6      6    Nina     578.00    2013-05-21      IT
7      7    Simon    632.80    2013-07-30      Operations
8      8    Guru     722.50    2014-06-17      Finance

分析CSV文件

默认情况下,read.csv()函数将输出作为数据帧。 这可以容易地如下检查。 此外,我们可以检查列和行的数量。


data <- read.csv("input.csv")

print(is.data.frame(data))
print(ncol(data))
print(nrow(data))

当我们执行上面的代码,它产生以下结果


[1] TRUE
[1] 5
[1] 8

一旦我们读取数据帧中的数据,我们可以应用所有适用于数据帧的函数,如下一节所述。

获得最高工资


# Create a data frame.
data <- read.csv("input.csv")

# Get the max salary from data frame.
sal <- max(data$salary)
print(sal)

当我们执行上面的代码,它产生以下结果


[1] 843.25

获取具有最高工资的人的详细信息

我们可以获取满足特定过滤条件的行,类似于​SQL where​子句。


# Create a data frame.
data <- read.csv("input.csv")

# Get the max salary from data frame.
sal <- max(data$salary)

# Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)

当我们执行上面的代码,它产生以下结果


      id    name  salary  start_date    dept
5     NA    Gary  843.25  2015-03-27    Finance

获取所有的 IT 部门员工的信息


# Create a data frame.
data <- read.csv("input.csv")

retval <- subset( data, dept == "IT")
print(retval)

当我们执行上面的代码,它产生以下结果


       id   name      salary   start_date   dept
1      1    Rick      623.3    2012-01-01   IT
3      3    Michelle  611.0    2014-11-15   IT
6      6    Nina      578.0    2013-05-21   IT

获得工资大于600的 IT 部门的人员


# Create a data frame.
data <- read.csv("input.csv")

info <- subset(data, salary > 600 & dept == "IT")
print(info)

当我们执行上面的代码,它产生以下结果


       id   name      salary   start_date   dept
1      1    Rick      623.3    2012-01-01   IT
3      3    Michelle  611.0    2014-11-15   IT

获得2014年或之后加入的人


# Create a data frame.
data <- read.csv("input.csv")

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
print(retval)

当我们执行上面的代码,它产生以下结果


       id   name     salary   start_date    dept
3      3    Michelle 611.00   2014-11-15    IT
4      4    Ryan     729.00   2014-05-11    HR
5     NA    Gary     843.25   2015-03-27    Finance
8      8    Guru     722.50   2014-06-17    Finance

写入CSV文件

R 语言可以创建​csv​文件形式的现有数据帧。 write.csv()函数用于创建​csv​文件。 此文件在工作目录中创建。


# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

# Write filtered data into a new file.
write.csv(retval,"output.csv")
newdata <- read.csv("output.csv")
print(newdata)

当我们执行上面的代码,它产生以下结果


  X      id   name      salary   start_date    dept
1 3      3    Michelle  611.00   2014-11-15    IT
2 4      4    Ryan      729.00   2014-05-11    HR
3 5     NA    Gary      843.25   2015-03-27    Finance
4 8      8    Guru      722.50   2014-06-17    Finance

这里列 X 来自数据集​newper​。 这可以在写入文件时使用附加参数删除。


# Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

# Write filtered data into a new file.
write.csv(retval,"output.csv", row.names = FALSE)
newdata <- read.csv("output.csv")
print(newdata)

当我们执行上面的代码,它产生以下结果


      id    name      salary   start_date    dept
1      3    Michelle  611.00   2014-11-15    IT
2      4    Ryan      729.00   2014-05-11    HR
3     NA    Gary      843.25   2015-03-27    Finance
4      8    Guru      722.50   2014-06-17    Finance

到此这篇关于R语言对CSV文件操作实例讲解的文章就介绍到这了,更多相关R语言CSV文件操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯