文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python如何实现前向和反向自动微分

2023-07-04 21:53

关注

本文小编为大家详细介绍“Python如何实现前向和反向自动微分”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python如何实现前向和反向自动微分”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

1 自动微分

许多经典的数值微分算法非常快,因为它们只需要计算差商。然而,他们的主要缺点在于他们是数值的,这意味着有限的算术精度和不精确的函数求值,而这些都从根本上限制了求解结果的质量。因此。充满噪声的、复杂多变的函数很难得到精准的数值微分。

自动微分技术(称为“automatic differentiation, autodiff”)是介于符号微分和数值微分的一种技术,它是在计算效率和计算精度之间的一种折衷。自动微分不受任何离散化算法误差的约束,它充分利用了微分的链式法则和其他关于导数的性质来准确地计算它们。

2 前向自动微分

我们先来计算简单的前向自动微分。假设我们有两个变量u和v,使用浮点数存储。我们将变量u′=du/dt和v′=dv/dt和这些变量一起存储,这里tt是独立的变量。在一些程序设计语言(如Python)中,我们可以选择定义一种新的数据类型来存储[u,u′]和[v,v′]这类数对。我们可以在这些数对上定义一种代数运算,这些代数运算编码了一些经典的操作:

Python如何实现前向和反向自动微分

在进行前向自动微分之前,我们需要先将计算f(t)所产生的操作序列表示为计算图。接着,采用自底向上的递推算法的思想,从做为递推起点的数对t≡[t0,1](因为dt/dt=1)开始,我们能够按照我们上述编码规则同时对函数f(t)和它的导数f′(t)进行求值。我们在编程语言中可以选择令数对重载运算符,这样额外的求导数运算就可以对用户透明地执行了。

例1 比如,对于函数f(x)=exp⁡(x2−x)/x,想要依次计算dyi/dx(这里yi为所有计算中间项)。则我们先从x开始将表达式分解为计算图:

Python如何实现前向和反向自动微分

然后前向递推地按照我们之前所述的编码规则来进行求导

Python如何实现前向和反向自动微分

注意链式法则(chain rule)告诉我们:

(f(g(x)))′=f′(g(x))⋅g′(x)

所以我们对

yk=g(yi)

y′k=g′(yi)⋅yi′

事实上,我们也能够处理有多个输入的函数g:

k=g(yi,⋯,yj)

多元微分链式法则如下:

Python如何实现前向和反向自动微分

比如,对于

Python如何实现前向和反向自动微分

我们有

Python如何实现前向和反向自动微分

下面展示了一个对二元函数模拟前向自动微分的过程。

例2 设(x1,x2)=x1⋅exp⁡(x2)−x1,模拟前向微分过程。

Python如何实现前向和反向自动微分

接下来我们看如何用Python代码来实现单变量函数的前向自动微分过程。为了简便起见,我们下面只编码了几个常用的求导规则。

import mathclass Var:    def __init__(self, val, deriv=1.0):        self.val = val        self.deriv = deriv        def __add__(self, other):        if isinstance(other, Var):            val = self.val + other.val            deriv = self.deriv + other.deriv        else:            val = self.val + other            deriv = self.deriv        return Var(val, deriv)        def __radd__(self, other):        return self + other    def __sub__(self, other):        if isinstance(other, Var):            val = self.val - other.val            deriv = self.deriv - other.deriv        else:            val = self.val - other            deriv = self.deriv        return Var(val, deriv)        def __rsub__(self, other):        val = other - self.val        deriv = - self.deriv        return Var(val, deriv)    def __mul__(self, other):        if isinstance(other, Var):            val = self.val * other.val            deriv = self.val * other.deriv + self.deriv * other.val        else:            val = self.val * other            deriv = self.deriv * other        return Var(val, deriv)        def __rmul__(self, other):        return self * other    def __truediv__(self, other):        if isinstance(other, Var):            val = self.val / other.val            deriv = (self.deriv * other.val - self.val * other.deriv)/other.val**2        else:            val = self.val / other            deriv = self.deriv / other        return Var(val, deriv)    def __rtruediv__(self, other):        val = other / self.val        deriv = other * 1/self.val**2        return Var(val, deriv)        def __repr__(self):        return "value: {}\t gradient: {}".format(self.val, self.deriv)        def exp(f: Var):    return Var(math.exp(f.val), math.exp(f.val) * f.deriv)

例如,我们若尝试计算函数f(x)=exp⁡(x2−x)/x在x=2.0处的导数f′(2.0)如下:

fx = lambda x: exp(x*x - x)/xdf = fx(Var(2.0))print(df)

打印输出:

value: 3.694528049465325         deriv: 9.236320123663312

可见,前向过程完成计算得到f(2.0)≈3.69, f′(2.0)≈9.24。

3 反向自动微分

我们前面介绍的前向自动微分方法在计算y=f(t)的时候并行地计算f′(t)。接下来我们介绍一种“反向”自动微分方法,相比上一种的方法它仅需要更少的函数求值,不过需要以更多的内存消耗和更复杂的实现做为代价。

同样,这个技术需要先将计算f(t)所产生的操作序列表示为计算图。不过,与之前的从dt/dt=1开始,然后往dy/dt方向计算不同,反向自动求导算法从dy/dy=1开始并且按与之前同样的规则往反方向计算,一步步地将分母替换为dt。反向自动微分可以避免不必要的计算,特别是当y是一个多元函数的时候。例如,对f(t1,t2)=f1(t1)+f2(t2),反向自动微分并不需要计算f1关于t2的微分或f2关于t1的微分。

例3 设f(x1,x2)=x1⋅exp(x2)−x1,模拟反向自动微分过程。

Python如何实现前向和反向自动微分

可见若采用反向自动微分,我们需要存储计算过程中的所有东西,故内存的使用量会和时间成正比。不过,在现有的深度学习框架中,对反向自动微分的实现进行了进一步优化,我们会在深度学习专题文章中再进行详述。

读到这里,这篇“Python如何实现前向和反向自动微分”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯