文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

关于pandas.date_range()的用法及说明

2024-04-02 19:55

关注

pandas.date_range()用法

date_range()是pandas中常用的函数,用于生成一个固定频率的DatetimeIndex时间索引。

原型:

date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)

常用参数为start、end、periods、freq。

还可以根据closed参数选择是否包含开始和结束时间,left包含开始时间,不包含结束时间,right与之相反。

默认同时包含开始时间和结束时间。

函数调用时至少要指定参数start、end、periods中的两个。

(1)指定起止时间

pd.date_range('20200101','20200110')

(2)指定开始时间和时间序列数量

pd.date_range('20200101',periods=10)

(3)指定结束时间和时间序列数量

pd.date_range(end='20200110',periods=10)

(4)指定开始时间、时间序列数量和频率

pd.date_range(start='20200101',periods=5,freq='2D')

(5)指定结束时间、时间序列数量和频率

pd.date_range(end='20200110',periods=5,freq='2D')

(6)指定起止时间和closed参数

pd.date_range('20200101','20200110',closed='left')

(7)时间序列做为索引,生成Series一维数组

dates = pd.date_range(start='20200101',periods=5,freq='2D')
pd.Series(range(10,20,2),index=dates)

(8)时间序列做行索引,生成DateFrame二维数组

dates = pd.date_range(start='20200101',periods=5,freq='2D')
pd.DataFrame(np.random.randn(5,5), index=dates, columns=list('ABCDE'))

pandas.date_range()详解

官方文档

pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)

返回一个固定频率的DatetimeIndex

参数

参数数据类型意义
startstr or datetime-like, optional生成日期的左侧边界
endstr or datetime-like, optional生成日期的右侧边界
periodsinteger, optional生成周期
freqstr or DateOffset, default ‘D’可以有多种比如‘5H’,频率别名参见链接
tzstr or tzinfo, optional返回本地化的DatetimeIndex的时区名,例如’Asia/Hong_Kong’
normalizebool, default False生成日期之前,将开始/结束时间初始化为午夜
namestr, default None产生的DatetimeIndex的名字
closed{None, ‘left’, ‘right’}, optional使区间相对于给定频率左闭合、右闭合、双向闭合(默认的None)
**kwargs 为了兼容性,对结果没有影响

案例

>>> pd.date_range(start='1/1/2018', end='1/08/2018')
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
              dtype='datetime64[ns]', freq='D')
>>> pd.date_range(start='1/1/2018', periods=8)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
              dtype='datetime64[ns]', freq='D')

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯