文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

opencv模板匹配相同位置去除重复的框

2024-04-02 19:55

关注

使用opencv自带的模板匹配

1、目标匹配函数:cv2.matchTemplate()
res=cv2.matchTemplate(image, templ, method, result=None, mask=None)
image:待搜索图像
templ:模板图像
result:匹配结果
method:计算匹配程度的方法,主要有以下几种:

待检测的图片如下,需要检测里面金币的位置

需要检测金币的模板如下:

2、基本的多对象模板匹配效果代码如下:


import cv2
import numpy as np
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]
 
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
#np.where返回的坐标值(x,y)是(h,w),注意h,w的顺序
for pt in zip(*loc[::-1]):  
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
cv2.imwrite("001.jpg",img_rgb)
cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

检测效果如下:

通过上图可以看到对同一个图有多个框标定,需要去重,只需要保留一个

解决方案:对于使用同一个待检区域使用NMS进行去掉重复的矩形框

3、使用NMS对模板匹配出来的矩形框进行去掉临近重复的,代码如下:


import cv2
import time
import numpy as np
 
def py_nms(dets, thresh):
    """Pure Python NMS baseline."""
    #x1、y1、x2、y2、以及score赋值
    # (x1、y1)(x2、y2)为box的左上和右下角标
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]
    #每一个候选框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    #order是按照score降序排序的
    order = scores.argsort()[::-1]
    # print("order:",order)
 
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        #计算重叠度IOU:重叠面积/(面积1+面积2-重叠面积)
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        #找到重叠度不高于阈值的矩形框索引
        inds = np.where(ovr <= thresh)[0]
        # print("inds:",inds)
        #将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要把这个1加回来
        order = order[inds + 1]
    return keep
 
def template(img_gray,template_img,template_threshold):
    '''
    img_gray:待检测的灰度图片格式
    template_img:模板小图,也是灰度化了
    template_threshold:模板匹配的置信度
    '''
 
    h, w = template_img.shape[:2]
    res = cv2.matchTemplate(img_gray, template_img, cv2.TM_CCOEFF_NORMED)
    start_time = time.time()
    loc = np.where(res >= template_threshold)#大于模板阈值的目标坐标
    score = res[res >= template_threshold]#大于模板阈值的目标置信度
    #将模板数据坐标进行处理成左上角、右下角的格式
    xmin = np.array(loc[1])
    ymin = np.array(loc[0])
    xmax = xmin+w
    ymax = ymin+h
    xmin = xmin.reshape(-1,1)#变成n行1列维度
    xmax = xmax.reshape(-1,1)#变成n行1列维度
    ymax = ymax.reshape(-1,1)#变成n行1列维度
    ymin = ymin.reshape(-1,1)#变成n行1列维度
    score = score.reshape(-1,1)#变成n行1列维度
    data_hlist = []
    data_hlist.append(xmin)
    data_hlist.append(ymin)
    data_hlist.append(xmax)
    data_hlist.append(ymax)
    data_hlist.append(score)
    data_hstack = np.hstack(data_hlist)#将xmin、ymin、xmax、yamx、scores按照列进行拼接
    thresh = 0.3#NMS里面的IOU交互比阈值
 
    keep_dets = py_nms(data_hstack, thresh)
    print("nms time:",time.time() - start_time)#打印数据处理到nms运行时间
    dets = data_hstack[keep_dets]#最终的nms获得的矩形框
    return dets
if __name__ == "__main__":
    img_rgb = cv2.imread('mario.jpg')#需要检测的图片
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)#转化成灰色
    template_img = cv2.imread('mario_coin.jpg', 0)#模板小图
    template_threshold = 0.8#模板置信度
    dets = template(img_gray,template_img,template_threshold)
    count = 0
    for coord in dets:
        cv2.rectangle(img_rgb, (int(coord[0]),int(coord[1])), (int(coord[2]),int(coord[3])), (0, 0, 255), 2)
    cv2.imwrite("result.jpg",img_rgb)

检测效果如下所示:

参考资料:

https://blog.csdn.net/qq_39507748/article/details/104598222
https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html
https://blog.csdn.net/mdjxy63/article/details/81037860
https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/

到此这篇关于opencv模板匹配相同位置去除重复的框的文章就介绍到这了,更多相关opencv模板匹配内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯