Recently, I was made a service which can provide a simple way to get best model. so, i spent lot of time to read source code of auto-sklearn, auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator.
when I write my logging module I found the logging module of auto-sklearn which used yaml file as config, the config file:
1 ---
2 version: 1
3 disable_existing_loggers: False
4 formatters:
5 simple:
6 format: '[%(asctime)s: %(levelname)s] %(message)s'
7
8 handlers:
9 console:
10 class: logging.StreamHandler
11 level: WARNING
12 formatter: simple
13 stream: ext://sys.stdout
14
15 file_handler:
16 class: logging.FileHandler
17 level: DEBUG
18 formatter: simple
19 filename: autosklearn.log
20
21 root:
22 level: ERROR
23 handlers: [console, file_handler]
24
25 loggers:
26 server:
27 level: INFO
28 handlers: [file_handler]
29 propagate: no
the caller can define loggers、handlers、formatters here, after that, caller need write setup code and get logger code.
1 # -*- encoding: utf-8 -*-
2 import logging
3 import logging.config
4 import os
5 import yaml
6
7
8 def setup_logger(output_file=None, logging_config=None):
9 # logging_config must be a dictionary object specifying the configuration
10 if not os.path.exists(os.path.dirname(output_file)):
11 os.makedirs(os.path.dirname(output_file))
12 if logging_config is not None:
13 if output_file is not None:
14 logging_config['handlers']['file_handler']['filename'] = output_file
15 logging.config.dictConfig(logging_config)
16 else:
17 with open(os.path.join(os.path.dirname(__file__), 'logging.yaml'),
18 'r') as fh:
19 logging_config = yaml.safe_load(fh)
20 if output_file is not None:
21 logging_config['handlers']['file_handler']['filename'] = output_file
22 logging.config.dictConfig(logging_config)
23
24
25 def _create_logger(name):
26 return logging.getLogger(name)
27
28
29 def get_logger(name):
30 logger = PickableLoggerAdapter(name)
31 return logger
32
33
34 class PickableLoggerAdapter(object):
35
36 def __init__(self, name):
37 self.name = name
38 self.logger = _create_logger(name)
39
40 def __getstate__(self):
41 """
42 Method is called when pickle dumps an object.
43
44 Returns
45 -------
46 Dictionary, representing the object state to be pickled. Ignores
47 the self.logger field and only returns the logger name.
48 """
49 return {'name': self.name}
50
51 def __setstate__(self, state):
52 """
53 Method is called when pickle loads an object. Retrieves the name and
54 creates a logger.
55
56 Parameters
57 ----------
58 state - dictionary, containing the logger name.
59
60 """
61 self.name = state['name']
62 self.logger = _create_logger(self.name)
63
64 def debug(self, msg, *args, **kwargs):
65 self.logger.debug(msg, *args, **kwargs)
66
67 def info(self, msg, *args, **kwargs):
68 self.logger.info(msg, *args, **kwargs)
69
70 def warning(self, msg, *args, **kwargs):
71 self.logger.warning(msg, *args, **kwargs)
72
73 def error(self, msg, *args, **kwargs):
74 self.logger.error(msg, *args, **kwargs)
75
76 def exception(self, msg, *args, **kwargs):
77 self.logger.exception(msg, *args, **kwargs)
78
79 def critical(self, msg, *args, **kwargs):
80 self.logger.critical(msg, *args, **kwargs)
81
82 def log(self, level, msg, *args, **kwargs):
83 self.logger.log(level, msg, *args, **kwargs)
84
85 def isEnabledFor(self, level):
86 return self.logger.isEnabledFor(level)
get_logger return a logger object, setup_logger setup logger handler which define output where.
when you use it,like this
1 from .util import get_logger, setup_logger
2
3
4 APP_DIR = os.path.dirname(os.path.abspath(__file__))
5 setup_logger(output_file=os.path.join(APP_DIR, 'logs', 'server.log'))
6 LOG = get_logger("server")
Define a global variable LOG for other modules to call.
all done.