文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python编程实现二分法和牛顿迭代法求平方根代码

2022-06-04 19:25

关注

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢?
实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration)

1:二分法

求根号5

a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.25>5,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.5625<5,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.515625<5,得到当前下限1.875

每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:


import math 
from math import sqrt 
 
def sqrt_binary(num): 
  x=sqrt(num) 
  y=num/2.0 
  low=0.0 
  up=num*1.0 
  count=1 
  while abs(y-x)>0.00000001: 
    print count,y 
    count+=1     
    if (y*y>num): 
      up=y 
      y=low+(y-low)/2 
    else: 
      low=y 
      y=up-(up-y)/2 
  return y 
 
print(sqrt_binary(5)) 
print(sqrt(5)) 

运行结果:
1 2.5
2 1.25
3 1.875
4 2.1875
5 2.34375
6 2.265625
7 2.2265625
8 2.24609375
9 2.236328125
10 2.2314453125
11 2.23388671875
12 2.23510742188
13 2.23571777344
14 2.23602294922
15 2.23617553711
16 2.23609924316
17 2.23606109619
18 2.23608016968
19 2.23607063293
20 2.23606586456
21 2.23606824875
22 2.23606705666
23 2.2360676527
24 2.23606795073
25 2.23606809974
26 2.23606802523
27 2.23606798798
2.23606796935
2.2360679775
[Finished in 0.1s]

经过27次二分法迭代,得到的值和系统sqrt()差别在0.00000001,精度在亿分之一,

0.001需要迭代8次

因此,在对精度要求不高的情况下,二分法也算比较高效的算法。

2:牛顿迭代

仔细思考一下就能发现,我们需要解决的问题可以简单化理解。

从函数意义上理解:我们是要求函数f(x)=x²,使f(x)=num的近似解,即x²-num=0的近似解。

从几何意义上理解:我们是要求抛物线g(x)=x²-num与x轴交点(g(x)=0)最接近的点。

我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:

查看图片

可以由此得到

查看图片

从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。

查看图片

对于一般情况:

查看图片

将m=2代入:

查看图片


def sqrt_newton(num): 
  x=sqrt(num) 
  y=num/2.0 
  count=1 
  while abs(y-x)>0.00000001: 
    print count,y 
    count+=1 
    y=((y*1.0)+(1.0*num)/y)/2.0000 
  return y 
 
print(sqrt_newton(5)) 
print(sqrt(5)) 

运行结果:
1 2.5
2 2.25
3 2.23611111111
2.23606797792
2.2360679775

精确到亿分之一,牛顿法只迭代了3次,是二分法的十倍

3:利用牛顿法求开立方


def cube_newton(num): 
  x=num/3.0 
  y=0 
  count=1 
  while abs(x-y)>0.00000001: 
    print count,x 
    count+=1 
    y=x 
    x=(2.0/3.0)*x+(num*1.0)/(x*x*3.0) 
  return x 
 
print(cube_newton(27))  

微积分、概率、线代是高级算法的基础课。可是,这么多年,已经忘得差不多了..............................

总结

以上就是本文关于Python编程实现二分法和牛顿迭代法求平方根代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯