文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

首篇仅使用2D标签训练多视图3D占用模型的新范式

2024-11-30 07:26

关注

【RenderOcc,首篇仅使用2D标签训练多视图3D占用模型的新范式】作者从多视图图像中提取NeRF风格的3D体积表示,并使用体积渲染技术来建立2D重建,从而实现从2D语义和深度标签的直接3D监督,减少了对昂贵的3D占用标注的依赖。大量实验表明,RenderOcc的性能与使用3D标签完全监督的模型相当,突显了这种方法在现实世界应用中的重要性。已开源。

题目: RenderOcc: Vision-Centric 3D Occupancy Prediction with 2DRendering Supervision

作者单位: 北京大学,小米汽车,港中文MMLAB

开源地址: GitHub - pmj110119/RenderOcc

3D占用预测在机器人感知和自动驾驶领域具有重要前景,它将3D场景量化为带有语义标签的网格单元。最近的工作主要利用3D体素空间中的完整占用标签进行监督。然而,昂贵的标注过程和有时模糊的标签严重限制了3D占用模型的可用性和可扩展性。为了解决这个问题,作者提出了RenderOcc,这是一种仅使用2D标签训练3D占用模型的新范式。具体而言,作者从多视图图像中提取NeRF风格的3D体积表示,并使用体积渲染技术来建立2D重建,从而实现从2D语义和深度标签的直接3D监督。此外,作者引入了一种辅助光线方法来解决自动驾驶场景中的稀疏视点问题,该方法利用顺序帧为每个目标构建全面的2D渲染。RenderOcc是第一次尝试仅使用2D标签来训练多视图3D占用模型,从而减少了对昂贵的3D占用标注的依赖。大量实验表明,RenderOcc的性能与使用3D标签完全监督的模型相当,突显了这种方法在现实世界应用中的重要性。

网络结构:

图 1.RenderOcc 代表了一种新的训练范例。与之前专注于使用昂贵的 3D 占用标签进行监督的工作不同,本文提出的 RenderOcc 利用 2D 标签来训练 3D 占用网络。通过 2D 渲染监督,该模型受益于细粒度 2D 像素级语义和深度监督。

图2.RenderOcc的总体框架。本文通过 2D 到 3D 网络提取体积特征并预测每个体素的密度和语义。因此,本文生成了语义密度场(Semantic Density Field),它可以执行体积渲染来生成渲染的 2D 语义和深度。对于Rays GT的生成,本文从相邻帧中提取辅助光线来补充当前帧的光线,并使用所提出的加权光线采样策略来净化它们。然后,本文用光线 GT 和 {,} 计算损失,实现2D标签的渲染监督。

图3。辅助光线: 单帧图像不能很好地捕捉物体的多视图信息。两个相邻的相机之间只有很小的重叠区域,视角的差异是有限的。通过引入来自相邻帧的辅助光线,该模型将显著地受益于多视图一致性约束。

实验结果:

原文链接:https://mp.weixin.qq.com/s/WzI8mGoIOTOdL8irXrbSPQ

来源:自动驾驶之心内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯