文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python实现车辆跟随滑模控制的实例

2024-04-02 19:55

关注

上一篇文章介绍了Python使用OPENCV的目标跟踪算法实现自动视频标注效果,感兴趣的朋友点击查看,使用滑模变结构控制策略来解决汽车跟踪问题,今天通过本文介绍下python实现车辆跟随滑模控制的实例,内容如下所示:

下面分别采用指数趋近律、等速趋近律、准滑模控制的方法完成车辆跟随问题的仿真

import matplotlib.pyplot as plt
'''
指数趋近律、等速趋近律、准滑模控制的车辆跟随问题仿真, 运行结果以图片形式保存在同目录下。
'''
# q1, q2分别是切换函数ei1, ei2前面的系数
q1, q2 = 2, 1
# lan是指数趋近律前面的系数
lan = 0.5
# 设定期望车间距均为12
l1, l2, l3, l4 = 12, 12, 12, 12
# 设定汽车质量均为1000
m1, m2, m3, m4 = 1000, 1000, 1000, 1000
# 设定动力学模型分子的速度平方项前的系数ci均为0.5(按照模型符号是负的)
c1, c2, c3, c4 = 0.5, 0.5, 0.5, 0.5
# 设定动力学模型分子的常数项系数Fi均为200(按照模型符号是负的)
f1, f2, f3, f4 = 200, 200, 200, 200
# 设定五辆车汽车的位移、速度、加速度
x0, x1, x2, x3, x4 = [100.], [90.], [79.5], [68.5], [57.]  
v0, v1, v2, v3, v4 = [20.], [19.], [18.], [17.], [16.]
a1, a2, a3, a4 = [0.], [0.], [0.], [0.]
# 设定趋近律
def reaching_law(m:int , s:float, q2:int, mode='exponential'):
    '''
    mode: 指数趋近律exponential| 等速趋近律uniform| 准滑模控制quasi_sliding
    '''
    if mode == 'exponential':
        return -m * lan * s / q2
    if mode == 'uniform':
        epslion = 0.3
        if s > 0:
            return -m * epslion / q2
        if s == 0:
            return 0
        if s < 0:
            return m * epslion / q2
    if mode == 'quasi_sliding':
        delta, epslion = 0.8, 2.
        if s < -delta:
            return m * epslion / q2
        if s > delta:
            return -m * epslion / q2
        else:
            return -m * epslion * s / (delta * q2)
# 设定第一辆车的加速度(分段函数), 要注意t的长度和a0的长度相等
def get_a0(t:list):    
    a0 = []
    for i in t:
        if i < 4:
            a0.append(0)
            continue
        if i >= 4 and i < 7:
            a0.append(-0.25*(i-4))
            continue
        if i >= 7 and i < 10:
            a0.append(-0.75)
            continue
        if i >= 10 and i < 16:
            a0.append(0.25*(i-10)-0.75) 
            continue
        if i >= 16 and i < 19:
            a0.append(0.75)
            continue
        if i >= 19 and i < 22:
            a0.append(0.25*(19-i)+0.75)
            continue
        if i >= 22 and i <= 30:                 # 注意i=30, 所以是取两端, 故为301份
            a0.append(0)
    return a0
if __name__ == "__main__":
    t = [float(i/10) for i in range(301)]       # 将30秒划分成301份, [0, 0.1, 0.2, ..., 29.9, 30]
    a0 = get_a0(t)
    # 四辆车的车间距误差ei1列表
    e11 = [x1[0] - x0[0] + l1]
    e21 = [x2[0] - x1[0] + l2]
    e31 = [x3[0] - x2[0] + l3]
    e41 = [x4[0] - x3[0] + l4]
    # 四辆车的车间距误差导数ei2的列表
    e12 = [v1[0] - v0[0]]
    e22 = [v2[0] - v1[0]]
    e32 = [v3[0] - v2[0]]
    e42 = [v4[0] - v3[0]]
    # 四辆车切换函数的列表
    s1 = [q1 * e11[0] + q2 * e12[0]]
    s2 = [q1 * e21[0] + q2 * e22[0]]
    s3 = [q1 * e31[0] + q2 * e32[0]]
    s4 = [q1 * e41[0] + q2 * e42[0]]
    # 四辆车控制律的列表
    u1, u2, u3, u4 = [0], [0], [0], [0]
    for i in range(1, 301):
        # 最前车0的速度、加速度更新,可以看出更新时用了直线等效, 0.1指的是时间标度(列表t划分的, 也是之后绘图打印的x轴)
        v0.append(v0[i-1] + 0.1 * (a0[i] + a0[i - 1]) * 0.5)
        x0.append(x0[i-1] + 0.1 * (v0[i] + v0[i - 1]) * 0.5)
        # 车1的车间距误差及导数更新
        e11.append(x1[i-1] - x0[i-1]+l1)
        e12.append(v1[i-1] - v0[i-1])
        # 车1的切换函数更新
        s1.append(q1 * e11[i] + q2 * e12[i])
        # 等效控制
        u1equ = c1 * (e12[i] + v0[i]) * (e12[i] + v0[i]) - m1 * q1 * e12[i] / q2 + m1 * a0[i] + f1 
        # 反馈控制(指数趋近律)
        u1n = reaching_law(m1, s1[i], q2)                           # 默认采用指数趋近律, 下同
        # u1n = reaching_law(m1, s1[i], q2, mode='uniform')         # 采用等速趋近律
        # u1n = reaching_law(m1, s1[i], q2, mode='quasi_sliding')   # 采用准滑模控制
        # 更新控制律
        u1.append(u1equ + u1n)
        # 利用控制律更新车1的加速度、速度、位移, 加速度是利用动力学模型得到的
        a1.append((-c1 * v1[i-1] * v1[i-1] + u1[i] - f1) / m1)
        v1.append(v1[i-1] + 0.1 * (a1[i] + a1[i - 1]) * 0.5)
        x1.append(x1[i-1] + 0.1 * (v1[i] + v1[i - 1]) * 0.5)
        
        # 车2、3、4过程同车1  
        e21.append(x2[i-1] - x1[i-1]+l2)
        e22.append(v2[i-1] - v1[i-1])
        s2.append(q1 * e21[i] + q2 * e22[i])
        u2equ = c2 * (e22[i] + v1[i]) * (e22[i] + v1[i]) - m2 * q1 * e22[i] / q2 + m2 * a1[i] + f2
        u2n = reaching_law(m2, s2[i], q2)                           # 默认采用指数趋近律
        # u2n = reaching_law(m2, s2[i], q2, mode='uniform')         # 采用等速趋近律
        # u2n = reaching_law(m2, s2[i], q2, mode='quasi_sliding')   # 采用准滑模控制
        u2.append(u2equ + u2n)
        a2.append((-c2 * v2[i-1] * v2[i-1] + u2[i] -f2) / m2)
        v2.append(v2[i-1] + 0.1 * (a2[i] + a2[i - 1]) * 0.5)
        x2.append(x2[i-1] + 0.1 * (v2[i] + v2[i - 1]) * 0.5)
        e31.append(x3[i-1] - x2[i-1]+l3)
        e32.append(v3[i-1] - v2[i-1])
        s3.append(q1 * e31[i] + q2 * e32[i])
        u3equ = c3 * (e32[i] + v2[i]) * (e32[i] + v2[i]) - m3 * q1 * e32[i] / q2 + m3 * a2[i] + f3 
        u3n = reaching_law(m3, s3[i], q2)
        # u3n = reaching_law(m3, s3[i], q2, mode='uniform')
        # u3n = reaching_law(m3, s3[i], q2, mode='quasi_sliding')
        u3.append(u3equ + u3n)
        a3.append((-c3 * v3[i-1] * v3[i-1] + u3[i] -f3) / m3)
        v3.append(v3[i-1] + 0.1 * (a3[i] + a3[i - 1]) * 0.5)
        x3.append(x3[i-1] + 0.1 * (v3[i] + v3[i - 1]) * 0.5)
        e41.append(x4[i-1] - x3[i-1]+l4)
        e42.append(v4[i-1] - v3[i-1])
        s4.append(q1 * e41[i] + q2 * e42[i])
        u4equ = c4 * (e42[i] + v3[i]) * (e42[i] + v3[i]) - m4 * q1 * e42[i] / q2 + m4 * a3[i] + f4 
        u4n = reaching_law(m4, s4[i], q2)
        # u4n = reaching_law(m4, s4[i], q2, mode='uniform')
        # u4n = reaching_law(m4, s4[i], q2, mode='quasi_sliding')
        u4.append(u4equ + u4n)
        a4.append((-c4 * v4[i-1] * v4[i-1] + u4[i] -f4) / m4)
        v4.append(v4[i-1] + 0.1 * (a4[i] + a4[i - 1]) * 0.5)
        x4.append(x4[i-1] + 0.1 * (v4[i] + v4[i - 1]) * 0.5)
    
    
    # 开始绘图
    # 绘制加速度曲线
    plt.figure()                            # 设置画布
    plt.plot(t, a0, label='car 0')     # :是指绘制点划线
    plt.plot(t, a1, label='car 1')
    plt.plot(t, a2, label='car 2')
    plt.plot(t, a3, label='car 3')
    plt.plot(t, a4, label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("Acceleration(m/s^2)",fontsize=13)
    plt.xlim(0, 30)    
    plt.legend()
    plt.savefig('./acceleration.png')       # 保存图像
    # 绘制速度曲线
    plt.clf()                               # 清空画布,不然会前后图像会重叠
    plt.plot(t, v0, ':', label='car 0')    
    plt.plot(t, v1, ':', label='car 1')
    plt.plot(t, v2, ':', label='car 2')
    plt.plot(t, v3, ':', label='car 3')
    plt.plot(t, v4, ':', label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("velocity(m/s)",fontsize=13)
    plt.xlim(0, 30)    
    plt.legend()
    plt.savefig('./velocity.png')           # 保存图像
    # 绘制位置曲线
    plt.clf()
    plt.plot(t, x0, ':', label='car 0')
    plt.plot(t, x1, ':', label='car 1')
    plt.plot(t, x2, ':', label='car 2')
    plt.plot(t, x3, ':', label='car 3')
    plt.plot(t, x4, ':', label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("position(m)",fontsize=13)
    plt.xlim(0, 30)    
    plt.legend()
    plt.savefig('./position.png')
    # 绘制车间距误差ei1曲线
    plt.clf()
    plt.plot(t, e11, label='car 1')
    plt.plot(t, e21, label='car 2')
    plt.plot(t, e31, label='car 3')
    plt.plot(t, e41, label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("space error(m)",fontsize=13)
    plt.xlim(0, 30)
    plt.legend()
    plt.savefig('./space_error.png')
    # 绘制车间距误差导数ei2曲线
    plt.clf()
    plt.plot(t, e12, ':', label='car 1')
    plt.plot(t, e22, ':', label='car 2')
    plt.plot(t, e32, ':', label='car 3')
    plt.plot(t, e42, ':', label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("space_error_derivative(m)",fontsize=13)
    plt.xlim(0, 30)
    plt.legend()
    plt.savefig('./space_error_derivative.png')
    # 绘制切换函数曲线
    plt.clf()
    plt.plot(t, s1, label='car 1')
    plt.plot(t, s2, label='car 2')
    plt.plot(t, s3, label='car 3')
    plt.plot(t, s4, label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("Switching Function",fontsize=13)
    plt.xlim(0, 30)
    plt.legend()
    plt.savefig('./Switching_Function.png')
    # 绘制控制输入U曲线
    plt.clf()
    plt.plot(t, u1, label='car 1')
    plt.plot(t, u2, label='car 2')
    plt.plot(t, u3, label='car 3')
    plt.plot(t, u4, label='car 4')
    plt.xlabel("Time(s)",fontsize=13)
    plt.ylabel("Control Input",fontsize=13)
    plt.xlim(0, 30)
    plt.legend()
    plt.savefig('./Control_Input.png')

到此这篇关于python实现车辆跟随滑模控制的文章就介绍到这了,更多相关python滑模控制内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯