一、类的约束
# _开头: 私有变量;
# __开问: 私有变量,不能被继承;
# __xxx__: 能被访问,不能被继承;
class A:
def __init__(self):
self._internal = 0 # 私有变量不能被访问
self.public = 1 # 可被访问
def public_method(self):
pass
def _private_method(self): # 私有方法不能被访问
pass
class B:
def __init__(self):
self.__private = 0 # 这个属性会在内存中被重新命名为_B__private
def __private_method(self): # 不能被访问,不能被继承
pass
def __private_method__(self): # 能被访问,不能被继承
pass
二、类的定义
2.1、创建创建
class Dog:
a = "0"; #相当于public static变量,全局的
"""__init__是一个默认的方法,且self为默认的,用self修饰的属性为public类型的类变量"""
def __init__(self, name, age):
self.name = name
self.age = age
self.sex = "1";#设置属性默认值
def sit(self):
print(self.name + "is now sitting" + "and sex is " + self.sex + Dog.a)
@classmethod
def user_name(cls, name): #注意这种注解的用法
return cls()
dog = Dog("kk", 12);
dog.sit()
2.1.1、类的导入
在python中分为文件、模块、类,其中文件和模块可划等价;所以导入有几种方式,比如dog.py文件中定义了两个Class,则在使用类中导入方法有以下几种:
- from car import Dog;#导入一个模块中的特定类,使用时则直接Car();
- import car;#导入一个模块中的所有类,使用时则需要car.Car();
- from car import *;#不推荐,容易引起命名冲突问题
from collections import OrderedDict; #使用标准类库
t = OrderedDict();
2.1.2、构造器
class Date:
# Primary constructor
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
# Alternate constructor
@classmethod
def today(cls):
t = time.localtime() #它接收一个class作为第一个参数,它被用来创建并返回最终的实例, 这个cls==__init__
return cls(t.tm_year, t.tm_mon, t.tm_mday)
a = Date(2020, 5, 10) # Primary
b = Date.today() # Alternate
减少构造函数的参数个数:
class Structure1:
# Class variable that specifies expected fields
_field_list = []
def __init__(self, *args):
if len(args) != len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')
# Set the arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)
# Example class definitions
class Course(Structure1):
# 这行只是为了一个准许入判断,没有太多实际意思,或是一个声明
_field_list = ['course_name', 'total_class', 'score']
c = Course('python', 30, 0.3);
关键字参数
class Structure2:
_field_list = []
def __init__(self, *args, **kwargs):
if len(args) > len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')
# Set all of the positional arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)
# Set the remaining keyword arguments
#是通过pop这种方式来检查的,在长度范围内如果pop出错则抛异常
for name in self._field_list[len(args):]:
setattr(self, name, kwargs.pop(name))
# Check for any remaining unknown arguments
if kwargs:
raise TypeError(f"Invalid argument(s): {','.join(kwargs)}")
# Example use
class Course(Structure2):
_field_list = ['course_name', 'total_class', 'score']
course_1 = Course('python', 30, 0.3)
course_2 = Course('python', 30, score=0.3)
course_3 = Course('python', total_class=30, score=0.3)
扩展关键字参数:
class Structure3:
# Class variable that specifies expected fields
_field_list = []
def __init__(self, *args, **kwargs):
if len(args) != len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')
# Set the arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)
# Set the additional arguments (if any)
extra_args = kwargs.keys() - self._field_list
for name in extra_args:
setattr(self, name, kwargs.pop(name))
if kwargs:
raise TypeError(f"Duplicate values for {','.join(kwargs)}")
# Example use
if __name__ == '__main__':
class Course(Structure3):
_field_list = ['course_name', 'total_class', 'score']
course_1 = Course('python', 30, 0.3)
course_2 = Course('python', 30, 0.3, date='8/5/2020')
2.1.3、类属性
要创建一个新的实例属性,可以通过描述器的形式来定义它的功能,一个描述器就是一个实现了3个核心属性访问操作的类,分别对应get\set\delete这三个特殊的方法。
# Descriptor attribute for an integer type-checked attribute
class Integer:
def __init__(self, name):
self.name = name
"""下面三个方法只是一个更严格的定义,可以不需要,要使用上面的描述器,需要把描述器放入到一个class中,这样所有对描述器的访问都会被get/set/delete所捕获"""
def __get__(self, instance, cls):
if not instance:
return self
else:
return instance.__dict__[self.name]
def __set__(self, instance, value):
if not isinstance(value, int):
raise TypeError('Expected an int object')
instance.__dict__[self.name] = value
def __delete__(self, instance):
del instance.__dict__[self.name]
示例1:
class Point:
"""实例变量,和下面的x,y不是一回事"""
x = Integer('x')
y = Integer('y')
def __init__(self, x, y):
self.x = x
self.y = y
print(Point.x.name) # x
point = Point(3, 5)
print(f'point x = {point.x}') #3
print(f'point y = {point.y}') #5
point.y = 6
print(f'after change,point y = {point.y}') #6
三、类的继承
ptyhon在实现继承时会用一个叫MRO列表的算法实现,它有三条规则:1、子类会先于父类;2、多个父类会根据它们在列表中的顺序被检查;3、如果对下一个类有两个合法的选择,则返回第一个合法的父类;
3.1、单继承
class A:
def __init__(self):
self.x = 0
class B(A):
def __init__(self):
super().__init__() #这行需要注意,也可以不写,但不写时就不会调用父类的init方法
self.y = 1
3.2、多继承
class Base:
def __init__(self):
print('call Base.__init__')
class A(Base):
def __init__(self):
Base.__init__(self)
print('call A.__init__')
class B(Base):
def __init__(self):
Base.__init__(self)
print('call B.__init__')
"""多继承的实现"""
class C(A,B):
def __init__(self):
A.__init__(self)
B.__init__(self)
print('call C.__init__')
c = C()
# call Base.__init__
# call A.__init__
# call Base.__init__
# call B.__init__
# call C.__init__
3.3、调用父类方法
class Proxy:
def __init__(self, obj):
self._obj = obj
def __getattr__(self, name):
return getattr(self._obj, name)
def __setattr__(self, name, value):
if name.startswith('_'):
"""调用父类方法"""
super().__setattr__(name, value)
else:
setattr(self._obj, name, value)
proxy = Proxy({})
proxy.__setattr__("_name", "hm")
3.4、属性扩展
3.4.1、完全扩展
# 父类
class Person:
def __init__(self, name):
self.name = name
# defined Getter function, auto to call the sign name.setter when it be build
@property
def name(self):
return self._name
# defined Setter function
@name.setter
def name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._name = value
# defined Deleter function
@name.deleter
def name(self):
raise AttributeError("Can't delete attribute")
"""子类"""
class SubPerson(Person):
@property
def name(self):
print('Getting name')
return super().name
@name.setter
def name(self, value):
print(f'Setting name to {value}')
super(SubPerson, SubPerson).name.__set__(self, value)
@name.deleter
def name(self):
print('Deleting name')
super(SubPerson, SubPerson).name.__delete__(self)
"""测试"""
sub_person = SubPerson('Guido')
print(f'name is: {sub_person.name}')
3.4.2、单独扩展
class SubPerson(Person):
@Person.name.getter
def name(self):
print('Getting name')
return super().name # or super(SubPerson, SubPerson).name.__set__(self, value)
sub_p = SubPerson('Bill')
#不能用property的原因是,property其实是get、set、del函数的集合,各有各的用处。下面才是正确的扩展方式,所以下面的代码是不工作的
class SubPerson(Person):
@property # Doesn't work
def name(self):
print('Getting name')
return super().name
#如果要用property属性则要用下面的编码实现
class SubPerson(Person):
@property
def name(self):
print('Getting name')
return super().name
@name.setter
def name(self, value):
print(f'Setting name to {value}')
super(SubPerson, SubPerson).name.__set__(self, value)
@name.deleter
def name(self):
print('Deleting name')
super(SubPerson, SubPerson).name.__delete__(self)
四、类的调用
import time
class Date:
# Primary constructor
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
# Alternate constructor
@classmethod
def today(cls):
t = time.localtime() #它接收一个class作为第一个参数,它被用来创建并返回最终的实例, 这个cls==__init__
return cls(t.tm_year, t.tm_mon, t.tm_mday)
"""普通调用"""
c = Date(2010, 12, 12)
"""类方法在继承中使用"""
class NewDate(Date):
pass
c = Date.today() # Creates an instance of Date (cls=Date)
d = NewDate.today() # Creates an instance of NewDate (cls=NewDate)
五、抽象类
from abc import ABCMeta, abstractmethod
class IStream(metaclass=ABCMeta):
@abstractmethod
def read(self, max_bytes=-1):
pass
@abstractmethod
def write(self, data):
pass
"""不能被实例化"""
#a = IStream()
class SocketStream(IStream):
def read(self, max_bytes=-1):
pass
def write(self, data):
pass
"""检查"""
def serialize(obj, stream):
if not isinstance(stream, IStream):
raise TypeError('Expected an IStream')
pass
5.1、强制类型检查
from abc import ABCMeta, abstractmethod
class IStream(metaclass=ABCMeta):
@abstractmethod
def read(self, max_bytes=-1):
pass
@abstractmethod
def write(self, data):
pass
import io
# Register the built-in I/O classes as supporting our interface
IStream.register(io.IOBase)
# Open a normal file and type check
f = None #open('test.txt')
print(f'f object is IStream type: {isinstance(f, IStream)}')
#f object is IStream type: False
六、类的比较
from functools import total_ordering
class Room:
def __init__(self, name, length, width):
self.name = name
self.length = length
self.width = width
self.square_feet = self.length * self.width
@total_ordering
class House:
def __init__(self, name, style):
self.name = name
self.style = style
self.rooms = list()
@property
def living_space_footage(self):
return sum(r.square_feet for r in self.rooms)
def add_room(self, room):
self.rooms.append(room)
def __str__(self):
return f'{self.name}: {self.living_space_footage} square foot {self.style}'
def __eq__(self, other):
return self.living_space_footage == other.living_space_footage
def __lt__(self, other):
return self.living_space_footage < other.living_space_footage
# Build a few houses, and add rooms to them
h1 = House('h1', 'Cape')
h1.add_room(Room('Master Bedroom', 14, 21))
h1.add_room(Room('Living Room', 18, 20))
h1.add_room(Room('Kitchen', 12, 16))
h1.add_room(Room('Office', 12, 12))
h2 = House('h2', 'Ranch')
h2.add_room(Room('Master Bedroom', 14, 21))
h2.add_room(Room('Living Room', 18, 20))
h2.add_room(Room('Kitchen', 12, 16))
h3 = House('h3', 'Split')
h3.add_room(Room('Master Bedroom', 14, 21))
h3.add_room(Room('Living Room', 18, 20))
h3.add_room(Room('Office', 12, 16))
h3.add_room(Room('Kitchen', 15, 17))
houses = [h1, h2, h3]
print(f'Is {h1} bigger than {h2}: {h1 > h2}')
print(f'Is {h2} smaller than {h3}: {h2 < h3}')
print(f'Is {h2} greater than or equal to {h1}: {h2 >= h1}')
print(f'Which one is biggest in houses: {max(houses)}')
print(f'Which is smallest in houses: {min(houses)}')
""""""
# Is h1: 990 square foot Cape bigger than h2: 846 square foot Ranch: True
# Is h2: 846 square foot Ranch smaller than h3: 1101 square foot Split: True
# Is h2: 846 square foot Ranch greater than or equal to h1: 990 square foot Cape: False
# Which one is biggest in houses: h3: 1101 square foot Split
# Which is smallest in houses: h2: 846 square foot Ranch
# """"""
class House:
def __eq__(self, other):
pass
def __lt__(self, other):
pass
# Methods created by @total_ordering
__le__ = lambda self, other: self < other or self == other
__gt__ = lambda self, other: not (self < other or self == other)
__ge__ = lambda self, other: not (self < other)
__ne__ = lambda self, other: not self == other
到此这篇关于Python类的定义继承调用比较方法技巧的文章就介绍到这了,更多相关Python类的定义内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!