文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

matlab如何实现图像去噪处理

2024-04-02 19:55

关注

这篇文章主要介绍了matlab如何实现图像去噪处理的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇matlab如何实现图像去噪处理文章都会有所收获,下面我们一起来看看吧。

1 内容介绍

隐马尔可夫模型(HMM)是一种用参数表示的用于描述随机过程统计特性的概率模型,由马尔可夫链演变而来。HMM是一种双层结构的模型[6],一层是状态转移过程,由一个一阶离散马尔可夫过程来描述,由状态转移矩阵表示,满足马尔可夫假设;另一层是可见的随机过程的状态(或状态跳转)产生观测矢量的过程,用观测矢量概率分布表示。对于任意一个随机事件,如图1所示,有一组观测值序列O1,O2,…,OT,该事件还隐含着一个状态序列Q1,Q2,…,QT。虚线上方是随机事件状态的转移情况,通过转移矩阵来描述,满足马尔可夫性;虚线下方是能够得到的观测值,满足输出独立性假设。1998年,Crouse和Nowak对隐马尔可夫的链式结构进行了扩展,并结合小波变换与多尺度马尔科夫模型,提出了小波域隐马尔可夫树模型。HMT模型可以看作是一种树状的HMM模型,因此能够很好地描述小波系数的统计特征,目前,已广泛应用于信号检测与估计、图像去噪和图像分割等方面。

matlab如何实现图像去噪处理

2 部分代码

%load lena512;

 pepper=imread('peppers.png');

 pepper=double(pepper)/256;

sigma = 0.1; %noise standard deviation

hh = daubcqf(4); %wavelet filter

x = pepper + sigma*randn(size(pepper));

disp(['PSNR of noisy image is ' num2str(psnr(pepper,x)) 'dB']);

y=hdenoise(x,hh);

disp(['PSNR of denoised image is ' num2str(psnr(pepper,y)) 'dB']);

figure(1);

subplot(121)

image(x*255+1);

colormap(gray(256));

axis square;

title('Noisy image');

subplot(122)

image(y*255+1);

colormap(gray(256));

axis square;

title('Denoised image');

关于“matlab如何实现图像去噪处理”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“matlab如何实现图像去噪处理”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-前端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯