文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

免费Python机器学习课程六:神经网络算法

2024-12-03 15:00

关注

我建议请仔细阅读"神经网络的想法"部分。但是,如果您不太清楚,请不要担心。继续执行部分。我把它分解成小块。同样,您自己运行所有代码将使您更清晰。

[[360033]]

神经网络如何工作

在简单的神经网络中,神经元是基本的计算单元。他们采用输入要素并将其作为输出进行输出。基本的神经网络如下所示:


在这里," layer1"是输入功能。"第1层"进入另一个节点layer2,最后输出预测的类别或假设。Layer2是隐藏层。您可以使用多个隐藏层。

您必须根据数据集和准确性要求设计神经网络。

正向传播

从第1层移动到第3层的过程称为前向传播。正向传播的步骤:

(1) 初始化每个输入要素的系数theta。假设有10个输入功能。说,我们有100个培训示例。这意味着100行数据。在这种情况下,我们输入矩阵的大小为100 x10。现在,您确定theta1的大小。行数必须与输入功能的数目相同。在此示例中,该值为10。列数应为您选择的隐藏层的大小。

(2) 将输入要素X与相应的theta相乘,然后添加一个偏差项。通过激活函数传递结果。

有几种可用的激活功能,例如S形,tanh,relu,softmax,swish

我将使用S型激活函数来演示神经网络。


在这里," a"代表隐藏的图层或layer2,而b是偏差。

g(z)是S型激活:


(3) 初始化隐藏层的theta2。大小将是隐藏层的长度乘以输出类的数量。在此示例中,下一层是输出层,因为我们没有更多的隐藏层。

(4) 然后,我们需要遵循与以前相同的过程。将theta和隐藏层相乘,然后通过S型激活层以获取假设或预测输出。

反向传播

反向传播是从输出层移动到layer2的过程。在此过程中,我们计算误差。

(1) 首先,从原始输出y中减去假设。那将是我们的增量。


(2) 现在,计算theta2的梯度。将delta3乘以theta2。将其乘以" a2"乘以" 1- a2"。在下面的公式中," a"上的上标2表示layer2。请不要误解它为正方形。


(3) 根据训练样本数m从潜水三角洲计算梯度的非正规化形式。

训练网络

修改theta。将输入要素乘以学习率乘以delta2即可得出theta1。请注意theta的尺寸。


重复正向传播和反向传播的过程,并不断更新参数,直到达到最佳成本为止。这是成本函数的公式。提醒一下,代价函数表示预测距原始输出变量有多远。


如果您注意到,则此成本函数公式几乎类似于逻辑回归成本函数。

神经网络的实现

我将使用安德鲁·伍(Andrew Ng)在Coursera的机器学习课程中的数据集。可以从以下链接随意下载数据集:

https://github.com/rashida048/Machine-Learning-With-Python/blob/master/ex3d1.xlsx

这是逐步实现神经网络的方法。我鼓励您自己运行每一行代码并打印输出以更好地理解它。

(1) 首先导入必要的包和数据集。

  1. import pandas as pd 
  2. import numpy as np 
  3. xls = pd.ExcelFile('ex3d1.xlsx') 
  4. df = pd.read_excel(xls, 'X', header = None

这是数据集的前五行。这些是数字的像素值。请随时下载数据集并遵循:

在此数据集中,输入和输出变量组织在单独的Excel工作表中。让我们将输出变量导入笔记本中:

  1. y = pd.read_excel(xls, 'y', header=None

这也是仅数据集的前五行。输出变量是1到10之间的数字。该项目的目标是使用存储在" df"中的输入变量来预测数字。

(2) 查找输入和输出变量的维度

  1. df.shapey.shape 

输入变量或df的形状为5000 x 400,输出变量或y的形状为5000 x 1。

(3) 定义神经网络

为简单起见,我们仅使用25个神经元的一个隐藏层。

  1. hidden_layer = 25 

找出输出类。

  1. yy_arr = y[0].unique() 
  2. #Output: 
  3. array([10, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64

如上所示,有10个输出类。

(4) 初始化θ和偏差

我们将随机初始化layer1和layer2的theta。因为我们有三层,所以会有theta1和theta2。

从第2步开始," df"的形状为5000 x400。这意味着有400个输入要素。因此,layer1的大小为400。由于我们将隐藏层的大小指定为25,因此layer2的大小为25。我们有10个输出类。因此,layer3的大小为10。

同样,将有两个随机初始化的偏置项b1和b2。

定义用于随机初始化theta的函数:

  1. def randInitializeWeights(Lin, Lout): 
  2.     epi = (6**1/2) / (Lin + Lout)**0.5 
  3.     w = np.random.rand(Lout, Lin)*(2*epi) -epi 
  4.     return w 

使用此功能并初始化theta

  1. hidden_layer = 25 
  2. output =10 
  3. theta1 = randInitializeWeights(len(df.T), hidden_layer) 
  4. theta2 = randInitializeWeights(hidden_layer, output) 
  5. theta = [theta1, theta2] 

现在,如上所述,初始化偏差项:

  1. b1 = np.random.randn(25,) 
  2. b2 = np.random.randn(10,) 

(5) 实施正向传播

使用前向传播部分中的公式。


为了方便起见,定义了一个将theta和X相乘的函数

  1. def z_calc(X, theta):  
  2.     return np.dot(X, theta.T) 

我们还将使用激活功能几次。还要具有乙状结肠激活功能

  1. def sigmoid(z):  
  2.     return 1/(1+ np.exp(-z)) 

现在,我将逐步演示正向传播。首先,计算z项:

  1. z1 =z_calc(df, theta1) + b1 

现在通过激活函数传递此z1以获得我们的隐藏层

  1. a1 = sigmoid(z1) 

a1是隐藏层。a1的形状为5000 x25。重复相同的过程以计算layer3或输出层

  1. z2 = z_calc(a1, theta2) + b2 
  2. a2 = sigmoid(z2) 

a2的形状为5000 x10。10列表示10类。a2是我们的layer3或最终输出或假设。如果在此示例中存在更多隐藏层,则将重复执行同一过程以从一层转移到另一层。使用输入要素计算输出层的过程称为前向传播。将它们放到一个函数中,因此我们可以对任意数量的层执行正向传播:

  1. l = 3  #the umber of layers 
  2. b = [b1, b2] 
  3. def hypothesis(df, theta): 
  4.     a = [] 
  5.     z = [] 
  6.     for i in range (0, l-1): 
  7.         z1 = z_calc(df, theta[i]) + b[i] 
  8.         out = sigmoid(z1) 
  9.         a.append(out) 
  10.         z.append(z1) 
  11.         df = out 
  12.     return out, a, z 

(6) 实施反向传播

这是向后计算梯度并更新theta的过程。在此之前,我们需要修改" y"。" y"有10个班级。但是我们需要将每个类划分到其列中。例如,第一列用于类10。对于其余类,我们将10替换为1,将其替换为0。这样,我们将为每个类创建一个单独的列。

  1. y1 = np.zeros([len(df), len(y_arr)]) 
  2. y1 = pd.DataFrame(y1) 
  3. for i in range(0, len(y_arr)): 
  4.     for j in range(0, len(y1)): 
  5.         if y[0][j] == y_arr[i]: 
  6.             y1.iloc[j, i] = 1 
  7.         else:  
  8.             y1.iloc[j, i] = 0 
  9. y1.head() 

现在,我首先逐步演示正向传播,然后将其全部放入一个函数中,对于反向传播,我将执行相同的操作。使用上面反向传播部分中的梯度公式,首先计算delta3。我们将使用前向传播实现中的z1,z2,a1和a2。

  1. del3 = y1-a2 

现在,使用以下公式计算delta2:


这是delta2:

  1. del2 = np.dot(del3, theta2) * a1*(1 - a1) 

在这里,我们需要学习一个新概念。那是一个S形梯度。S型梯度的公式为:


如果您注意到,这与增量公式中的a(1 — a)完全相同。因为a是sigmoid(z)。因为这是一个约定,所以当我将它们全部组合在一起以编写函数时,我将用此S形梯度代替delta2公式中的a(1-a)项。他们是完全一样的。我只是想演示两个。让我们为S型梯度编写一个函数:

  1. def sigmoid_grad(z):  
  2.     return sigmoid(z)*(1 - sigmoid(z)) 

最后,是时候使用以下公式更新theta了:


我们需要选择学习率。我选择了0.003。我鼓励您尝试其他学习率,以了解其效果:

  1. theta1 = np.dot(del2.T, pd.DataFrame(a1)) * 0.003 
  2. theta2 = np.dot(del3.T, pd.DataFrame(a2)) * 0.003 

这就是theta需要更新的方式。此过程称为反向传播,因为它向后移动。在编写用于反向传播的函数之前,我们需要定义成本函数。因为我也将成本的计算包括在反向传播方法中。尽管可以在正向传播中添加它,也可以在训练网络时将其分开。这是成本函数的方法

  1. def cost_function(y, y_calc, l):  
  2.     return (np.sum(np.sum(-np.log(y_calc)*y - np.log(1-y_calc)*(1-y))))/m 

这里m是训练示例的数量。放在一起:

  1. y1 = np.zeros([len(df), len(y_arr)]) 
  2. y1 = pd.DataFrame(y1) 
  3. for i in range(0, len(y_arr)): 
  4.     for j in range(0, len(y1)): 
  5.         if y[0][j] == y_arr[i]: 
  6.             y1.iloc[j, i] = 1 
  7.         else:  
  8.             y1.iloc[j, i] = 0 
  9. y1.head() 

(7) 训练网络

我将训练网络20个纪元。我将在此代码片段中再次初始化theta。因为我已经使用了theta并对其进行了更新。因此,如果我不再次对其进行初始化,那么我将最终从更新的theta开始。但我想重新开始。

  1. theta1 = randInitializeWeights(len(df.T), hidden_layer) 
  2. theta2 = randInitializeWeights(hidden_layer, output) 
  3. theta = [theta1, theta2] 
  4. cost_list = [] 
  5. for i in range(20): 
  6.     theta, costbackpropagation(df, theta, y1, 0.003) 
  7.     cost_list.append(cost) 
  8. cost_list 

我使用了0.003的学习率,并将其运行了20个时期。但是请查看下面提供的GitHub链接。我尝试了不同的学习速度和不同的时期,终于到达了这里。

我们获得了在每个时期计算出的成本清单以及最终更新的theta。使用此最终theta预测输出。

(8) 预测输出并计算精度

只需使用假设函数来传递此更新的theta以预测输出:

  1. out, a, z = hypothesis(df, theta) 

现在计算精度,

  1. accuracy0 
  2. for i in range(0, len(out)): 
  3.     for j in range(0, len(out[i])): 
  4.         if out[i][j] >= 0.5 and y1.iloc[i, j] == 1: 
  5.             accuracy += 1 
  6. accuracy/len(df) 

精度为100%。完美吧?但是,我们并非始终都能获得100%的准确性。有时,获得70%的准确性非常好,具体取决于数据集。

恭喜!您刚刚开发了完整的神经网络!

结论

对于更简单的分类问题,逻辑回归仍然非常有效!但是对于更复杂的问题,神经网络可以提供更好的结果。如您所见,通过向前和向后传播,它可以更好地学习训练数据。在自然语言处理和图像分类中,神经网络在AI行业中的表现非常出色。

这是Github的完整工作代码链接:

https://github.com/rashida048/Machine-Learning-With-Python/blob/master/NeuralNetworkFinal.ipynb

 

来源:今日头条内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯