文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

用自洽性提升大模型推理能力,谷歌解答基准中75%数学问题,比GPT-3提升20%

2024-12-02 03:34

关注

现在来自 Google Research 的研究者们提出了一种称为「自洽性(self-consistency)」的简单策略,它显著提高了大型语言模型的推理准确率。

论文地址:https://arxiv.org/pdf/2203.11171.pdf

该论文的作者之一、Google Brain 的创始成员 Quoc Le 今天在推特上发文表示:这种自洽方法能够解决 GSM8K 基准中 75% 的数学问题,大幅超越现有方法。

图源:https://twitter.com/quocleix/status/1513632492124663808

简单来说,复杂的推理任务通常有多个能得到正确答案的推理路径,自洽方法通过思维提示链从语言模型中采样一组不同的推理路径,然后返回其中最自洽的答案。

该方法在一系列算术和常识推理基准上评估自洽性,可以稳健地提高各种语言模型的准确性,而无需额外的训练或辅助模型。当与最近的大型语言模型 PaLM-540B 结合使用时,自洽方法将多个基准推理任务的性能提高到 SOTA 水平。

该方法是完全无监督的,预训练语言模型直接可用,不需要额外的人工注释,也不需要任何额外的训练、辅助模型或微调。

该研究在三种大型语言模型上评估一系列算术推理和常识推理任务的自洽性,包括 LaMDA-137B (Thoppilan et al., 2022)、PaLM-540B (Chowdhery et al., 2022) 和 GPT-3 175B (Brown et al., 2020)。研究者发现,对于这几种规模不同的语言模型,自洽方法都能显著提高其推理能力。与通过贪心解码(Wei et al., 2022)生成单一思维链相比,自洽方法有助于在所有推理任务中显著提高准确性,如下图 2 所示。

多样化推理路径上的自洽

人类的一个突出特征是思维方式不同。人们会很自然地假设,在需要深思熟虑的任务中,可能有几种解决方法,所有这些方法都会得出相同的正确答案。因此,研究者建议可以通过从语言模型解码器采样以在语言模型中模拟这一过程。

如下表 1 所示,一个模型可以为一个数学问题生成多个可能的回答,这些回答最终得出相同的正确答案(如输出 2、4 和 5)。由于语言模型不是完美的推理器,模型也可能产生错误的推理路径或者在某一个推理步骤中出错(例如输出 1 和 3 中),这种解决方案不太可能得出相同的答案( 表 1 中的 26 和 14)。 

也就是说,当假设推理过程正确,即使它们是多样化的,在最终答案中往往比不正确的推理过程具有更高的一致性。

研究者提出通过一种自洽(self-consistency)方法来利用这种直觉。具体步骤如下:

在实验调查中,研究者发现思维链提示与相结合,会比单独使用仅考虑单一生成路径的思维链产生好得多的结果。

实验结果

研究者进行了一系列实验,以在不同的算术和常识推理基准上将提出的自洽方法与现有方法进行比较。结果发现,该方法极大地提高了每种语言模型的推理准确性,涵盖了广泛的模型尺度。

具体地,他们评估了不同推理路径上的自洽性,即自洽性(多路径)(Multipath)。结果取 10 次运行的平均值,在每次运行中独立于解码器对 40 个输出进行采样。比较的基线是贪心解码单个思想链,称为贪心解码(Single-path),之前已被用于大型语言模型中的解码。

算术推理结果如下表 2 所示。对于 LaMDA-137B,自洽性策略在每个任务上较贪心解码(Single-path)均实现了显著的性能提升,在 AddSub、ASDiv、AQuA 和 GSM8K 任务上获得接近 10% 绝对准确率提升,在 MultiArith 和 SVAMP 任务上分别提升了 23.9% 和 14.4%。

对于更大的 PaLM540B 模型,自洽性策略显著提升性能,在 ASDiv、AQuA、SVAMP 和 GSM8K 上实现了 7.9%、12.5%、7.6% 和 17.9% 的显著增益。

常识推理结果如下表 3 所示。对于 LaMDA-137B 模型,自洽性策略显著提升所有任务的准确率,其中 StrategyQA 和 CommonsenseQA 的绝对准确率提升了 2%-5%,ARC easy set 和 ARC challenge set 的绝对准确率分别提升了 4.0% 和 4.7%。

同样地,更大的 PaLM540B 模型也实现了持续收益,StrategyQA 上提升了 6.3%,ARC-challenge 上提升了 3.5%。

下图 3 中通过对来自解码器的不同数量的推理路径进行采样,展示了自洽性与贪心解码(Single-path)的性能比较。可以看到,采样更多数量(如 40 个)的推理路径始终会产生更好的性能,再次强调了在推理路径中引入多样性的重要性。

该研究将自洽方法和基于集成的方法进行小样本学习来比较二者的性能。结果如下表 5 所示,与自洽方法相比,基于集成的方法获得的增益要小得多。

另一种提高生成质量的常用方法是采样排序(sample-and-rank),其中从解码器中采样多个序列,然后根据每个序列的对数概率或基于额外训练的重排序器进行排序。

该研究使用 GPT-3 模型得到了如下图 4 所示的结果。虽然采样排序方法通过额外的采样序列和排序提高了准确性,但与自洽方法相比,增益要小得多。

更多细节内容请参阅论文原文。​

来源:机器学习内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯