文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorch中的dataset用法详解

2024-04-02 19:55

关注

1.torch.utils.data 里面的dataset使用方法

当我们继承了一个 Dataset类之后,我们需要重写 len 方法,该方法提供了dataset的大小; getitem 方法, 该方法支持从 0 到 len(self)的索引

from torch.utils.data import Dataset, DataLoader
import torch

class MyDataset(Dataset):
    """
        下载数据、初始化数据,都可以在这里完成
    """

    def __init__(self):
        self.x = torch.linspace(11,20,10)
        self.y = torch.linspace(1,10,10)
        self.len = len(self.x)

    def __getitem__(self, index):
        return self.x[index], self.y[index]

    def __len__(self):
        return self.len


# 实例化这个类,然后我们就得到了Dataset类型的数据,记下来就将这个类传给DataLoader,就可以了。
mydataset = MyDataset()#[return:
#                                # (tensor(x1),tensor(y1));
#                                # (tensor(x2),tensor(y2));
#                                # ......

train_loader2 = DataLoader(dataset=mydataset,
                           batch_size=5,
                           shuffle=False)

for epoch in range(3):  # 训练所有!整套!数据 3 次
    for step,(batch_x,batch_y) in enumerate(train_loader2):  # 每一步 loader 释放一小批数据用来学习
                                #return:
                                        #(tensor(x1,x2,x3,x4,x5),tensor(y1,y2,y3,y4,y5))
                                        #(tensor(x6,x7,x8,x9,x10),tensor(y6,y7,y8,y9,y10))
        # 假设这里就是你训练的地方...

        # 打出来一些数据
        print('Epoch: ', epoch, '| Step:', step, '| batch x: ', batch_x.numpy(), '| batch y: ', batch_y.numpy())

2.torchvision.datasets的使用方法

torchvisiondatasets中所有封装的数据集都是torch.utils.data.Dataset的子类,它们都实现了__getitem__和__len__方法。因此,它们都可以用torch.utils.data.DataLoader进行数据加载。

用法1:使用官方数据集

可选数据集参考:https://www.pianshen.com/article/9695297328/

代码:

torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

root (string): 表示数据集的根目录,其中根目录存在CIFAR10/processed/training.pt和CIFAR10/processed/test.pt的子目录
train (bool, optional): 如果为True,则从training.pt创建数据集,否则从test.pt创建数据集
download (bool, optional): 如果为True,则从internet下载数据集并将其放入根目录。如果数据集已下载,则不会再次下载
transform (callable, optional): 接收PIL图片并返回转换后版本图片的转换函数
target_transform (callable, optional): 接收PIL接收目标并对其进行变换的转换函数
import torchvision

# 准备的测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch: {}".format(epoch), imgs, step)
        step = step + 1

writer.close()

用法2:ImageFolder通用的自己数据集加载器

一个通用的数据加载器,数据集中的数据以以下方式组织

root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png

root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
torchvision.datasets.ImageFolder(root="root folder path", [transform, target_transform])

ImageFolder有以下成员变量:

该方法可以结合torch.utils.data.Subset使用 ,以根据示例索引将您的ImageFolder数据集分为训练和测试。

orig_set = torchvision.datasets.Imagefolder('dataset/')  # your dataset
n = len(orig_set)  # total number of examples
n_test = int(0.1 * n)  # take ~10% for test
test_set = torch.utils.data.Subset(orig_set, range(n_test))  # take first 10%
train_set = torch.utils.data.Subset(orig_set, range(n_test, n))  # take the rest 

到此这篇关于pytorchdataset用法详解的文章就介绍到这了,更多相关pytorch的dataset用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯