文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Qt结合OpenCV怎么部署yolov5

2023-06-29 22:24

关注

本篇内容主要讲解“Qt结合OpenCV怎么部署yolov5”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Qt结合OpenCV怎么部署yolov5”吧!

一、新建项目 UI设计

Qt结合OpenCV怎么部署yolov5

二、代码部分 mainwindow 类

mainwindow.h

#ifndef MAINWINDOW_H#define MAINWINDOW_H#include <QFileDialog>#include <QFile>#include <opencv2/opencv.hpp>#include <opencv2/dnn.hpp>#include <QMainWindow>#include <QTimer>#include <QImage>#include <QPixmap>#include <QDateTime>#include <QMutex>#include <QMutexLocker>#include <QMimeDatabase>#include <iostream>#include <yolov5.h>#include <chrono>#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_core453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_imgcodecs453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_imgproc453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_videoio453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_objdetect453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\opencv\\lib\\opencv_dnn453.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\deployment_tools\\inference_engine\\lib\\intel64\\Release\\inference_engine.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\deployment_tools\\inference_engine\\lib\\intel64\\Release\\inference_engine_c_api.lib")#pragma comment(lib,"C:\\Program Files (x86)\\Intel\\openvino_2021\\deployment_tools\\inference_engine\\lib\\intel64\\Release\\inference_engine_transformations.lib")//LIBS+= -L "C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\*.lib"//LIBS+= -L "C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\inference_engine\lib\intel64\Release\*.lib"//#ifdef QT_NO_DEBUG//#pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_core452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgproc452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_video452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_videoio452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_objdetect452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_shape452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn452.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn_objdetect452.lib")//#else//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_core452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgproc452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_video452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_videoio452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_objdetect452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_shape452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn452d.lib")//#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn_objdetect452d.lib")//#endif//#ifdef QT_NO_DEBUG//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_core452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgcodecs452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgproc452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgcodecs452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_video452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_videoio452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_objdetect452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_shape452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_dnn452.lib")//#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_dnn_objdetect452.lib")//#endifQPixmap Mat2Image(cv::Mat src);QT_BEGIN_NAMESPACEnamespace Ui { class MainWindow; }QT_END_NAMESPACEclass MainWindow : public QMainWindow{    Q_OBJECTpublic:    MainWindow(QWidget *parent = nullptr);    void Init();    ~MainWindow();private slots:    void readFrame(); //自定义信号处理函数    void on_openfile_clicked();    void on_loadfile_clicked();    void on_startdetect_clicked();    void on_stopdetect_clicked();    void on_comboBox_activated(const QString &arg1);private:    Ui::MainWindow *ui;    QTimer *timer;    cv::VideoCapture *capture;    YOLOV5 *yolov5;    NetConfig conf;    NetConfig *yolo_nets;    std::vector<cv::Rect> bboxes;    int IsDetect_ok = 0;};#endif // MAINWINDOW_H

mainwindow.cpp

#include "mainwindow.h"#include "ui_mainwindow.h"MainWindow::MainWindow(QWidget *parent)    : QMainWindow(parent)    , ui(new Ui::MainWindow){    ui->setupUi(this);    setWindowTitle(QStringLiteral("YoloV5目标检测软件"));    timer = new QTimer(this);    timer->setInterval(33);    connect(timer,SIGNAL(timeout()),this,SLOT(readFrame()));    ui->startdetect->setEnabled(false);    ui->stopdetect->setEnabled(false);    Init();}MainWindow::~MainWindow(){    capture->release();    delete capture;    delete [] yolo_nets;    delete yolov5;    delete ui;}void MainWindow::Init(){    capture = new cv::VideoCapture();    yolo_nets = new NetConfig[4]{                                {0.5, 0.5, 0.5, "yolov5s"},                                {0.6, 0.6, 0.6, "yolov5m"},                                {0.65, 0.65, 0.65, "yolov5l"},                                {0.75, 0.75, 0.75, "yolov5x"}                            };    conf = yolo_nets[0];    yolov5 = new YOLOV5();    yolov5->Initialization(conf);            ui->textEditlog->append(QStringLiteral("默认模型类别:yolov5s args: %1 %2 %3")                                    .arg(conf.nmsThreshold)                                    .arg(conf.objThreshold)                                    .arg(conf.confThreshold));}void MainWindow::readFrame(){    cv::Mat frame;    capture->read(frame);    if (frame.empty()) return;    auto start = std::chrono::steady_clock::now();    yolov5->detect(frame);    auto end = std::chrono::steady_clock::now();    std::chrono::duration<double, std::milli> elapsed = end - start;    ui->textEditlog->append(QString("cost_time: %1 ms").arg(elapsed.count()));//    double t0 = static_cast<double>(cv::getTickCount());//    yolov5->detect(frame);//    double t1 = static_cast<double>(cv::getTickCount());//    ui->textEditlog->append(QStringLiteral("cost_time: %1 ").arg((t1 - t0) / cv::getTickFrequency()));    cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);    QImage rawImage = QImage((uchar*)(frame.data),frame.cols,frame.rows,frame.step,QImage::Format_RGB888);    ui->label->setPixmap(QPixmap::fromImage(rawImage));}void MainWindow::on_openfile_clicked(){    QString filename = QFileDialog::getOpenFileName(this,QStringLiteral("打开文件"),".","*.mp4 *.avi;;*.png *.jpg *.jpeg *.bmp");    if(!QFile::exists(filename)){        return;    }    ui->statusbar->showMessage(filename);    QMimeDatabase db;    QMimeType mime = db.mimeTypeForFile(filename);    if (mime.name().startsWith("image/")) {        cv::Mat src = cv::imread(filename.toLatin1().data());        if(src.empty()){            ui->statusbar->showMessage("图像不存在!");            return;        }        cv::Mat temp;        if(src.channels()==4)            cv::cvtColor(src,temp,cv::COLOR_BGRA2RGB);        else if (src.channels()==3)            cv::cvtColor(src,temp,cv::COLOR_BGR2RGB);        else            cv::cvtColor(src,temp,cv::COLOR_GRAY2RGB);        auto start = std::chrono::steady_clock::now();        yolov5->detect(temp);        auto end = std::chrono::steady_clock::now();        std::chrono::duration<double, std::milli> elapsed = end - start;        ui->textEditlog->append(QString("cost_time: %1 ms").arg(elapsed.count()));        QImage img = QImage((uchar*)(temp.data),temp.cols,temp.rows,temp.step,QImage::Format_RGB888);        ui->label->setPixmap(QPixmap::fromImage(img));        ui->label->resize(ui->label->pixmap()->size());        filename.clear();    }else if (mime.name().startsWith("video/")) {        capture->open(filename.toLatin1().data());        if (!capture->isOpened()){            ui->textEditlog->append("fail to open MP4!");            return;        }        IsDetect_ok +=1;        if (IsDetect_ok ==2)            ui->startdetect->setEnabled(true);        ui->textEditlog->append(QString::fromUtf8("Open video: %1 succesfully!").arg(filename));        //获取整个帧数QStringLiteral        long totalFrame = capture->get(cv::CAP_PROP_FRAME_COUNT);        ui->textEditlog->append(QStringLiteral("整个视频共 %1 帧").arg(totalFrame));        ui->label->resize(QSize(capture->get(cv::CAP_PROP_FRAME_WIDTH), capture->get(cv::CAP_PROP_FRAME_HEIGHT)));        //设置开始帧()        long frameToStart = 0;        capture->set(cv::CAP_PROP_POS_FRAMES, frameToStart);        ui->textEditlog->append(QStringLiteral("从第 %1 帧开始读").arg(frameToStart));        //获取帧率        double rate = capture->get(cv::CAP_PROP_FPS);        ui->textEditlog->append(QStringLiteral("帧率为: %1 ").arg(rate));    }}void MainWindow::on_loadfile_clicked(){    QString onnxFile = QFileDialog::getOpenFileName(this,QStringLiteral("选择模型"),".","*.onnx");    if(!QFile::exists(onnxFile)){        return;    }    ui->statusbar->showMessage(onnxFile);    if (!yolov5->loadModel(onnxFile.toLatin1().data())){        ui->textEditlog->append(QStringLiteral("加载模型失败!"));        return;    }    IsDetect_ok +=1;    ui->textEditlog->append(QString::fromUtf8("Open onnxFile: %1 succesfully!").arg(onnxFile));    if (IsDetect_ok ==2)        ui->startdetect->setEnabled(true);}void MainWindow::on_startdetect_clicked(){    timer->start();    ui->startdetect->setEnabled(false);    ui->stopdetect->setEnabled(true);    ui->openfile->setEnabled(false);    ui->loadfile->setEnabled(false);    ui->comboBox->setEnabled(false);    ui->textEditlog->append(QStringLiteral("================\n"                                           "    开始检测\n"                                           "================\n"));}void MainWindow::on_stopdetect_clicked(){    ui->startdetect->setEnabled(true);    ui->stopdetect->setEnabled(false);    ui->openfile->setEnabled(true);    ui->loadfile->setEnabled(true);    ui->comboBox->setEnabled(true);    timer->stop();    ui->textEditlog->append(QStringLiteral("================\n"                                           "    停止检测\n"                                           "================\n"));}void MainWindow::on_comboBox_activated(const QString &arg1){    if (arg1.contains("s")){        conf = yolo_nets[0];    }else if (arg1.contains("m")) {        conf = yolo_nets[1];    }else if (arg1.contains("l")) {        conf = yolo_nets[2];    }else if (arg1.contains("x")) {        conf = yolo_nets[3];}    yolov5->Initialization(conf);    ui->textEditlog->append(QStringLiteral("使用模型类别:%1 args: %2 %3 %4")                            .arg(arg1)                            .arg(conf.nmsThreshold)                            .arg(conf.objThreshold)                            .arg(conf.confThreshold));}

yolov5类

yolov5.h

#ifndef YOLOV5_H#define YOLOV5_H#include <opencv2/opencv.hpp>#include <opencv2/dnn.hpp>#include <fstream>#include <sstream>#include <iostream>#include <exception>#include <QMessageBox>struct NetConfig{    float confThreshold; // class Confidence threshold    float nmsThreshold;  // Non-maximum suppression threshold    float objThreshold;  //Object Confidence threshold    std::string netname;};class YOLOV5{public:    YOLOV5(){}    void Initialization(NetConfig conf);    bool loadModel(const char* onnxfile);    void detect(cv::Mat& frame);private:    const float anchors[3][6] = {{10.0, 13.0, 16.0, 30.0, 33.0, 23.0}, {30.0, 61.0, 62.0, 45.0, 59.0, 119.0},{116.0, 90.0, 156.0, 198.0, 373.0, 326.0}};    const float stride[3] = { 8.0, 16.0, 32.0 };    std::string classes[80] = {"person", "bicycle", "car", "motorbike", "aeroplane", "bus",                              "train", "truck", "boat", "traffic light", "fire hydrant",                              "stop sign", "parking meter", "bench", "bird", "cat", "dog",                              "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",                              "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",                              "skis", "snowboard", "sports ball", "kite", "baseball bat",                              "baseball glove", "skateboard", "surfboard", "tennis racket",                              "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",                              "banana", "apple", "sandwich", "orange", "broccoli", "carrot",                              "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant",                              "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse",                              "remote", "keyboard", "cell phone", "microwave", "oven", "toaster",                              "sink", "refrigerator", "book", "clock", "vase", "scissors",                              "teddy bear", "hair drier", "toothbrush"};    const int inpWidth = 640;    const int inpHeight = 640;    float confThreshold;    float nmsThreshold;    float objThreshold;    cv::Mat blob;    std::vector<cv::Mat> outs;    std::vector<int> classIds;    std::vector<float> confidences;    std::vector<cv::Rect> boxes;    cv::dnn::Net net;    void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame);    void sigmoid(cv::Mat* out, int length);};static inline float sigmoid_x(float x){    return static_cast<float>(1.f / (1.f + exp(-x)));}#endif // YOLOV5_H

yolov5.cpp

#include "yolov5.h"using namespace std;using namespace cv;void YOLOV5::Initialization(NetConfig conf){    this->confThreshold = conf.confThreshold;    this->nmsThreshold = conf.nmsThreshold;    this->objThreshold = conf.objThreshold;    classIds.reserve(20);    confidences.reserve(20);    boxes.reserve(20);    outs.reserve(3);}bool YOLOV5::loadModel(const char *onnxfile){    try {        this->net = cv::dnn::readNetFromONNX(onnxfile);        return true;    } catch (exception& e) {        QMessageBox::critical(NULL,"Error",QStringLiteral("模型加载出错,请检查重试!\n %1").arg(e.what()),QMessageBox::Yes,QMessageBox::Yes);        return false;    }    this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_INFERENCE_ENGINE);    this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);//    this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);//    this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);//    try {//        this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);//        this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);//    } catch (exception& e2) {//        this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);//        this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);//        QMessageBox::warning(NULL,"warning",QStringLiteral("正在使用CPU推理!\n %1").arg(e2.what()),QMessageBox::Yes,QMessageBox::Yes);//        return false;//    }}void YOLOV5::detect(cv::Mat &frame){    cv::dnn::blobFromImage(frame, blob, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);    this->net.setInput(blob);    this->net.forward(outs, this->net.getUnconnectedOutLayersNames());    /generate proposals    classIds.clear();    confidences.clear();    boxes.clear();    float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;    int n = 0, q = 0, i = 0, j = 0, nout = 8 + 5, c = 0;    for (n = 0; n < 3; n++)   ///尺度    {        int num_grid_x = (int)(this->inpWidth / this->stride[n]);        int num_grid_y = (int)(this->inpHeight / this->stride[n]);        int area = num_grid_x * num_grid_y;        this->sigmoid(&outs[n], 3 * nout * area);        for (q = 0; q < 3; q++)    ///anchor数        {            const float anchor_w = this->anchors[n][q * 2];            const float anchor_h = this->anchors[n][q * 2 + 1];            float* pdata = (float*)outs[n].data + q * nout * area;            for (i = 0; i < num_grid_y; i++)            {                for (j = 0; j < num_grid_x; j++)                {                    float box_score = pdata[4 * area + i * num_grid_x + j];                    if (box_score > this->objThreshold)                    {                        float max_class_socre = 0, class_socre = 0;                        int max_class_id = 0;                        for (c = 0; c < 80; c++)  get max socre                        {                            class_socre = pdata[(c + 5) * area + i * num_grid_x + j];                            if (class_socre > max_class_socre)                            {                                max_class_socre = class_socre;                                max_class_id = c;                            }                        }                        if (max_class_socre > this->confThreshold)                        {                            float cx = (pdata[i * num_grid_x + j] * 2.f - 0.5f + j) * this->stride[n];  ///cx                            float cy = (pdata[area + i * num_grid_x + j] * 2.f - 0.5f + i) * this->stride[n];   ///cy                            float w = powf(pdata[2 * area + i * num_grid_x + j] * 2.f, 2.f) * anchor_w;   ///w                            float h = powf(pdata[3 * area + i * num_grid_x + j] * 2.f, 2.f) * anchor_h;  ///h                            int left = (cx - 0.5*w)*ratiow;                            int top = (cy - 0.5*h)*ratioh;   ///坐标还原到原图上                            classIds.push_back(max_class_id);                            confidences.push_back(max_class_socre);                            boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));                        }                    }                }            }        }    }    // Perform non maximum suppression to eliminate redundant overlapping boxes with    // lower confidences    vector<int> indices;    cv::dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);    for (size_t i = 0; i < indices.size(); ++i)    {        int idx = indices[i];        Rect box = boxes[idx];        this->drawPred(classIds[idx], confidences[idx], box.x, box.y,            box.x + box.width, box.y + box.height, frame);    }}void YOLOV5::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat &frame){    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 3);    string label = format("%.2f", conf);    label = this->classes[classId] + ":" + label;    int baseLine;    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);    top = max(top, labelSize.height);    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);}void YOLOV5::sigmoid(Mat *out, int length){    float* pdata = (float*)(out->data);    int i = 0;    for (i = 0; i < length; i++)    {        pdata[i] = 1.0 / (1 + expf(-pdata[i]));    }}

三、效果演示

Qt结合OpenCV怎么部署yolov5

到此,相信大家对“Qt结合OpenCV怎么部署yolov5”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯