这篇文章主要介绍python中求解线性规划的包是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
说明
Scipy库提供简单的线性或非线性规划问题。
但不能解决背包问题的0-1规划问题,或者整数规划问题,混合整数规划问题。
PuLP可以解决线性规划、整数规划、0-1规划和混合整数规划问题。
为不同类型的问题提供各种解决方案。
Cvxpy是一个凸优化工具包。
可以解决线性规划、整数规划、0-1规划、混合整数规划、二次规划和几何规划等问题。
实例
以整数线性规划为例
# -*- coding: utf-8 -*-import pulp as pulp def solve_ilp(objective , constraints) : print objective print constraints prob = pulp.LpProblem('LP1' , pulp.LpMaximize) prob += objective for cons in constraints : prob += cons print prob status = prob.solve() if status != 1 : #print 'status' #print status return None else : #return [v.varValue.real for v in prob.variables()] return [v.varValue.real for v in prob.variables()] #解如下整数线性规划#maximize z = c*x = 3*x1 + 4*x2 + 5*x3#subject to :#x1 2 3 >= 0#x1 + 2*x2 < 20#x2 + 3*x3 <= 40 V_NUM = 3#变量,直接设置下限variables = [pulp.LpVariable('X%d'%i , lowBound = 0 , cat = pulp.LpInteger) for i in range(0 , V_NUM)]#目标函数c = [3 , 4 , 5]objective = sum([c[i]*variables[i] for i in range(0 , V_NUM)])#约束条件constraints = [] a1 = [1 , 2 , 0]constraints.append(sum([a1[i]*variables[i] for i in range(0 , V_NUM)]) <= 100)a2 = [0 , 1 , 3]constraints.append(sum([a2[i]*variables[i] for i in range(0 , V_NUM)]) <= 40)print constraints res = solve_ilp(objective , constraints)print res
以上是“python中求解线性规划的包是什么”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!