文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何将Yolov5的detect.py修改为可以直接调用的函数详解

2024-04-02 19:55

关注

前几天学习了Yolov5,当我想实际将Yolov5实际运用的时候却不知道怎么办了

然后我决定对Yolov5的detect.py修改为可以直接调用的函数

因为我只需要识别图片,所以我将detect.py修改为只要传入一张图片他就可以返回坐标

ps:我这里用的是Yolov5(6.0版本)

# Copyright (c) 2022 guluC
 
#导入需要的库
import os
import sys
from pathlib import Path
import numpy as np
import cv2
import torch
import torch.backends.cudnn as cudnn

#初始化目录
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # 定义YOLOv5的根目录
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # 将YOLOv5的根目录添加到环境变量中(程序结束后删除)
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
 
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
 
#导入letterbox
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
 
weights=ROOT / 'yolov5s.pt'  # 权重文件地址   .pt文件
source=ROOT / 'data/images'  # 测试数据文件(图片或视频)的保存路径
data=ROOT / 'data/coco128.yaml'  # 标签文件地址   .yaml文件
 
imgsz=(640, 640)  # 输入图片的大小 默认640(pixels)
conf_thres=0.25  # object置信度阈值 默认0.25  用在nms中
iou_thres=0.45  # 做nms的iou阈值 默认0.45   用在nms中
max_det=1000  # 每张图片最多的目标数量  用在nms中
device='0'  # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu
classes=None  # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3
agnostic_nms=False  # 进行nms是否也除去不同类别之间的框 默认False
augment=False  # 预测是否也要采用数据增强 TTA 默认False
visualize=False  # 特征图可视化 默认FALSE
half=False  # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False
dnn=False  # 使用OpenCV DNN进行ONNX推理
 
# 获取设备
device = select_device(device)
 
# 载入模型
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
imgsz = check_img_size(imgsz, s=stride)  # 检查图片尺寸
 
# Half
# 使用半精度 Float16 推理
half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
if pt or jit:
    model.model.half() if half else model.model.float()
def detect(img):
    # Dataloader
    # 载入数据
    dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
    # Run inference
    # 开始预测
    model.warmup(imgsz=(1, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    #对图片进行处理
    im0 = img
    # Padded resize
    im = letterbox(im0, imgsz, stride, auto=pt)[0]
    # Convert
    im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
    im = np.ascontiguousarray(im)
    t1 = time_sync()
    im = torch.from_numpy(im).to(device)
    im = im.half() if half else im.float()  # uint8 to fp16/32
    im /= 255  # 0 - 255 to 0.0 - 1.0
    if len(im.shape) == 3:
        im = im[None]  # expand for batch dim
    t2 = time_sync()
    dt[0] += t2 - t1
    # Inference
    # 预测
    pred = model(im, augment=augment, visualize=visualize)
    t3 = time_sync()
    dt[1] += t3 - t2
    # NMS
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
    dt[2] += time_sync() - t3
    #用于存放结果
    detections=[]
    # Process predictions
    for i, det in enumerate(pred):  # per image 每张图片
        seen += 1
        # im0 = im0s.copy()
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
            # Write results
            # 写入结果
            for *xyxy, conf, cls in reversed(det):
                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
                xywh = [round(x) for x in xywh]
                xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2],
                        xywh[3]]  # 检测到目标位置,格式:(left,top,w,h)
                cls = names[int(cls)]
                conf = float(conf)
                detections.append({'class': cls, 'conf': conf, 'position': xywh})
    #输出结果
    for i in detections:
        print(i)
    #推测的时间
    LOGGER.info(f'({t3 - t2:.3f}s)')
    return detections
path = 'C://Users//25096//Desktop//yoloV5//yolov5//yolov5-master//data//images//zidane.jpg'
img = cv2.imread(path)
#传入一张图片
detect(img)

我这里用的是Yolov5自带的zidane.jpg

这是输出结果 

 class:标签的名称

conf:置信度

position:xywh ( 左上角x,左上角y,宽,高 )

总结

到此这篇关于如何将Yolov5的detect.py修改为可以直接调用的函数的文章就介绍到这了,更多相关Yolov5的detect.py直接调用函数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯