文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

看图学NumPy之如何掌握n维数组基础知识点

2024-04-02 19:55

关注

本篇内容介绍了“看图学NumPy之如何掌握n维数组基础知识点”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

NumPy是Python的最重要的扩展程序库之一,也是入门机器学习编程的必备工具。然而对初学者来说,NumPy的大量运算方法非常难记。

看图学NumPy之如何掌握n维数组基础知识点

最近,国外有位程序员讲NumPy的基本运算以图解的方式写下来,让学习过程变得轻松有趣。在Reddit机器学习社区发布不到半天就收获了500+赞。

看图学NumPy之如何掌握n维数组基础知识点

下面就让我们跟随他的教程一起来学习吧!

教程内容分为向量 (一维数组)、矩阵 (二维数组)、三维与更高维数组3个部分。

Numpy数组与Python列表

在介绍正式内容之前,先让我们先来了解一下Numpy数组与Python列表的区别。

乍一看,NumPy数组类似于Python列表。它们都可以用作容器,具有获取(getting)和设置(setting)元素以及插入和移除元素的功能。

两者有很多相似之处,以下是二者在运算时的一个示例:

看图学NumPy之如何掌握n维数组基础知识点

和Python列表相比,Numpy数组具有以下特点:

更紧凑,尤其是在一维以上的维度;向量化操作时比Python列表快,但在末尾添加元素比Python列表慢。

看图学NumPy之如何掌握n维数组基础知识点

△在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N)

向量运算

向量初始化

创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。

看图学NumPy之如何掌握n维数组基础知识点

NumPy数组无法像Python列表那样加长,因为在数组末尾没有保留空间。

因此,常见的做法是定义一个Python列表,对它进行操作,然后再转换为NumPy数组,或者用np.zerosnp.empty初始化数组,预分配必要的空间:

看图学NumPy之如何掌握n维数组基础知识点

有时我们需要创建一个空数组,大小和元素类型与现有数组相同:

看图学NumPy之如何掌握n维数组基础知识点

实际上,所有用常量填充创建的数组的函数都有一个_like对应项,来创建相同类型的常数数组:

看图学NumPy之如何掌握n维数组基础知识点

在NumPy中,可以用arange或者linspace来初始化单调序列数组:

看图学NumPy之如何掌握n维数组基础知识点

如果需要类似[0., 1., 2.]的浮点数组,可以更改arange输出的类型:arange(3).astype(float)。

但是有更好的方法:arange函数对数据类型敏感,如果将整数作为参数,生成整数数组;如果输入浮点数(例如arange(3.)),则生成浮点数组。

但是arange在处理浮点数方面并不是特别擅长:

看图学NumPy之如何掌握n维数组基础知识点

这是因为0.1对于我们来说是一个有限的十进制数,但对计算机而言却不是。在二进制下,0.1是一个无穷小数,必须在某处截断。

这就是为什么将小数部分加到步骤arange通常是一个不太好的方法:我们可能会遇到一个bug,导致数组的元素个数不是我们想要的数,这会降低代码的可读性和可维护性。

这时候,linspace会派上用场。它不受舍入错误的影响,并始终生成要求的元素数。

出于测试目的,通常需要生成随机数组,NumPy提供随机整数、均匀分布、正态分布等几种随机数形式:

看图学NumPy之如何掌握n维数组基础知识点

向量索引

一旦将数据存储在数组中,NumPy便会提供简单的方法将其取出:

看图学NumPy之如何掌握n维数组基础知识点

上面展示了各式各样的索引,例如取出某个特定区间,从右往左索引、只取出奇数位等等。

但它们都是所谓的view,也就是不存储原始数据。并且如果原始数组在被索引后进行更改,则不会反映原始数组的改变。

这些索引方法允许分配修改原始数组的内容,因此需要特别注意:只有下面最后一种方法才是复制数组,如果用其他方法都可能破坏原始数据:

看图学NumPy之如何掌握n维数组基础知识点

从NumPy数组中获取数据的另一种超级有用的方法是布尔索引,它允许使用各种逻辑运算符,来检索符合条件的元素:

看图学NumPy之如何掌握n维数组基础知识点

注意:Python中的三元比较3<=a<=5在NumPy数组中不起作用。

如上所述,布尔索引也会改写数组。它有两个常见的函数,分别是np.wherenp.clip

看图学NumPy之如何掌握n维数组基础知识点

向量运算

算术运算是NumPy速度最引入注目的地方之一。NumPy的向量运算符已达到C++级别,避免了Python的慢循环。

NumPy允许像普通数字一样操作整个数组(加减乘除、整除、幂):

看图学NumPy之如何掌握n维数组基础知识点

△ 和Python中一样,a//b表示div b(整除),x**n表示xⁿ

向量还可以与标量进行类似的运算,方法相同:

看图学NumPy之如何掌握n维数组基础知识点

大多数的数学函数都有NumPy对应项用于处理向量:

看图学NumPy之如何掌握n维数组基础知识点

向量的点积、叉积也有运算符:

看图学NumPy之如何掌握n维数组基础知识点

我们也可以进行三角函数、反三角函数、求斜边运算:

看图学NumPy之如何掌握n维数组基础知识点

数组可以四舍五入为整数:

看图学NumPy之如何掌握n维数组基础知识点

△ floor取下界;ceil取上界;round为四舍六入五取偶

NumPy还可以执行以下基本的统计运算(最大最小值、平均值、方差、标准差):

看图学NumPy之如何掌握n维数组基础知识点

不过排序函数的功能比Python列表对应函数更少:

看图学NumPy之如何掌握n维数组基础知识点

搜索向量中的元素

与Python列表相反,NumPy数组没有index方法。

看图学NumPy之如何掌握n维数组基础知识点

比较浮点数

函数np.allclose(a, b)用于比较具有给定公差的浮点数组:

看图学NumPy之如何掌握n维数组基础知识点

除此之外np.allclose在绝对和相对公差公式中还存在一些小问题,例如,对某些数存在allclose(a, b) != allclose(b, a)。这些问题已在math.isclose函数中得到解决。

矩阵运算

NumPy中曾经有一个专用的类matrix,但现在已弃用,因此下面将交替使用矩阵和2D数组两个词。

矩阵初始化语法与向量相似:

看图学NumPy之如何掌握n维数组基础知识点

这里需要双括号,因为第二个位置参数是为dtype保留的。

随机矩阵的生成也类似于向量的生成:

看图学NumPy之如何掌握n维数组基础知识点

二维索引语法比嵌套列表更方便:

看图学NumPy之如何掌握n维数组基础知识点

和一维数组一样,上图的view表示,切片数组实际上并未进行任何复制。修改数组后,更改也将反映在切片中。

axis参数

在许多操作(例如求和)中,我们需要告诉NumPy是否要跨行或跨列进行操作。为了使用任意维数的通用表示法,NumPy引入了axis的概念:axis参数实际上是所讨论索引的数量:第一个索引是axis=0,第二个索引是axis=1,等等。

因此在二维数组中,如果axis=0是按列,那么axis=1就是按行。

看图学NumPy之如何掌握n维数组基础知识点

矩阵运算

除了普通的运算符(如+,-,*,/,//和**)以元素方式计算外,还有一个@运算符可计算矩阵乘积:

看图学NumPy之如何掌握n维数组基础知识点

在第一部分中,我们已经看到向量乘积的运算,NumPy允许向量和矩阵之间,甚至两个向量之间进行元素的混合运算:

看图学NumPy之如何掌握n维数组基础知识点

行向量与列向量

从上面的示例可以看出,在二维数组中,行向量和列向量被不同地对待。

默认情况下,一维数组在二维操作中被视为行向量。因此,将矩阵乘以行向量时,可以使用(n,)或(1,n),结果将相同。

如果需要列向量,则有转置方法对其进行操作:

看图学NumPy之如何掌握n维数组基础知识点

能够从一维数组中生成二位数组列向量的两个操作是使用命令reshape重排和newaxis建立新索引:

看图学NumPy之如何掌握n维数组基础知识点

这里的-1参数表示reshape自动计算第二个维度上的数组长度,None在方括号中充当np.newaxis的快捷方式,该快捷方式在指定位置添加了一个空axis。

因此,NumPy中总共有三种类型的向量:一维数组,二维行向量和二维列向量。这是两者之间显式转换的示意图:

看图学NumPy之如何掌握n维数组基础知识点

根据规则,一维数组被隐式解释为二维行向量,因此通常不必在这两个数组之间进行转换,相应区域用灰色标出。

矩阵操作

连接矩阵有两个主要函数:

看图学NumPy之如何掌握n维数组基础知识点

这两个函数只堆叠矩阵或只堆叠向量时,都可以正常工作。但是当涉及一维数组与矩阵之间的混合堆叠时,vstack可以正常工作:hstack会出现尺寸不匹配错误。

因为如上所述,一维数组被解释为行向量,而不是列向量。解决方法是将其转换为列向量,或者使用column_stack自动执行:

看图学NumPy之如何掌握n维数组基础知识点

堆叠的逆向操作是分裂:

看图学NumPy之如何掌握n维数组基础知识点

矩阵可以通过两种方式完成复制:tile类似于复制粘贴,repeat类似于分页打印。

看图学NumPy之如何掌握n维数组基础知识点

特定的列和行可以用delete进行删除:

看图学NumPy之如何掌握n维数组基础知识点

逆运算为插入:

看图学NumPy之如何掌握n维数组基础知识点

append就像hstack一样,该函数无法自动转置一维数组,因此再次需要对向量进行转置或添加长度,或者使用column_stack代替:

看图学NumPy之如何掌握n维数组基础知识点

实际上,如果我们需要做的就是向数组的边界添加常量值,那么pad函数就足够了:

看图学NumPy之如何掌握n维数组基础知识点

Meshgrid

如果我们要创建以下矩阵:

看图学NumPy之如何掌握n维数组基础知识点

两种方法都很慢,因为它们使用的是Python循环。在MATLAB处理这类问题的方法是创建一个meshgrid

看图学NumPy之如何掌握n维数组基础知识点

该meshgrid函数接受任意一组索引,mgrid仅是切片,indices只能生成完整的索引范围。fromfunction如上所述,仅使用I和J参数一次调用提供的函数。

但是实际上,在NumPy中有一种更好的方法。无需在整个矩阵上耗费存储空间。仅存储大小正确的矢量就足够了,运算规则将处理其余的内容:

看图学NumPy之如何掌握n维数组基础知识点

在没有indexing=&rsquo;ij&rsquo;参数的情况下,meshgrid将更改参数的顺序:J, I= np.meshgrid(j, i)&mdash;这是一种“ xy”模式,用于可视化3D图。

除了在二维或三维数组上初始化外,meshgrid还可以用于索引数组:

看图学NumPy之如何掌握n维数组基础知识点

矩阵统计

就像之前提到的统计函数一样,二维数组接受到axis参数后,会采取相应的统计运算:

看图学NumPy之如何掌握n维数组基础知识点

二维及更高维度中,argmin和argmax函数返回最大最小值的索引:

看图学NumPy之如何掌握n维数组基础知识点

all和any两个函数也能使用axis参数:

看图学NumPy之如何掌握n维数组基础知识点

矩阵排序

尽管axis参数对上面列出的函数很有用,但对二维排序却没有帮助:

看图学NumPy之如何掌握n维数组基础知识点

axis绝不是Python列表key参数的替代。不过NumPy具有多个函数,允许按列进行排序:

1、按第一列对数组排序:a[a[:,0].argsort()]

看图学NumPy之如何掌握n维数组基础知识点

argsort排序后,此处返回原始数组的索引数组。

此技巧可以重复,但是必须小心,以免下一个排序混淆前一个排序的结果:

a = a[a[:,2].argsort()] a = a[a[:,1].argsort(kind=&rsquo;stable&rsquo;)] a = a[a[:,0].argsort(kind=&rsquo;stable&rsquo;)]

看图学NumPy之如何掌握n维数组基础知识点

2、有一个辅助函数lexsort,该函数按上述方式对所有可用列进行排序,但始终按行执行,例如:

看图学NumPy之如何掌握n维数组基础知识点

3、还有一个参数order,但是如果从普通(非结构化)数组开始,则既不快速也不容易使用。

4、因为这个特殊的操作方式更具可读性和它可能是一个更好的选择,这样做的pandas不易出错:

高维数组运算

通过重排一维向量或转换嵌套的Python列表来创建3D数组时,索引的含义为(z,y,x)。

第一个索引是平面的编号,然后才是在该平面上的移动:

看图学NumPy之如何掌握n维数组基础知识点

这种索引顺序很方便,例如用于保留一堆灰度图像:这a[i]是引用第i个图像的快捷方式。

但是此索引顺序不是通用的。处理RGB图像时,通常使用(y,x,z)顺序:前两个是像素坐标,最后一个是颜色坐标(Matplotlib中是RGB ,OpenCV中是BGR ):

看图学NumPy之如何掌握n维数组基础知识点

这样,可以方便地引用特定像素:a[i,j]给出像素的RGB元组(i,j)。

因此,创建特定几何形状的实际命令取决于正在处理的域的约定:

看图学NumPy之如何掌握n维数组基础知识点

显然,NumPy函数像hstack、vstack或dstack不知道这些约定。其中硬编码的索引顺序是(y,x,z),RGB图像顺序是:

看图学NumPy之如何掌握n维数组基础知识点

△RGB图像数组(为简便起见,上图仅2种颜色)

如果数据的布局不同,则使用concatenate命令堆叠图像,并在axis参数中提供显式索引数会更方便:

看图学NumPy之如何掌握n维数组基础知识点

如果不方便使用axis,可以将数组转换硬编码为hstack的形式:

看图学NumPy之如何掌握n维数组基础知识点

这种转换没有实际的复制发生。它只是混合索引的顺序。

混合索引顺序的另一个操作是数组转置。检查它可能会让我们对三维数组更加熟悉。

根据我们决定的axis顺序,转置数组所有平面的实际命令将有所不同:对于通用数组,它交换索引1和2,对于RGB图像,它交换0和1:

看图学NumPy之如何掌握n维数组基础知识点

有趣的是,(和唯一的操作模式)默认的axes参数颠倒了索引顺序,这与上述两个索引顺序约定都不相符。

最后,还有一个函数,可以在处理多维数组时节省很多Python循环,并使代码更简洁,这就是爱因斯坦求和函数einsum

看图学NumPy之如何掌握n维数组基础知识点

它将沿重复索引的数组求和。

“看图学NumPy之如何掌握n维数组基础知识点”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-前端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯